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Abstract. Wildfire behaviour depends on complex interactions between fuels, topography and weather, over a wide range of 17 

scales, being important for fire research and management applications. To allow for a significant progress towards better fire 18 

management, the operational and research communities require detailed open data on observed wildfire behaviour. Here, we 19 

present the Portuguese Large Wildfire Spread Database (PT-FireSprd) that includes the reconstruction of the spread of 80 large 20 

wildfires that occurred in Portugal between 2015 and 2021. It includes a detailed set of fire behaviour descriptors, such as rate-21 

of-spread (ROS), fire growth rate (FGR), and fire radiative energy (FRE). The wildfires were reconstructed by converging 22 

evidence from complementary data sources, such as satellite imagery/products, airborne and ground data collected by fire 23 

personnel, official fire data and information in external reports. We then implemented a digraph-based algorithm to estimate 24 

the fire behaviour descriptors and combined it with MSG-SEVIRI fire radiative power estimates. A total of 1197 observations 25 

of ROS and FGR were estimated along with 609 FRE estimates. The extreme fires of 2017 were responsible for the maximum 26 

observed values of ROS (8956 m/h) and FGR (4436 ha/h). Combining both descriptors, we defined 6 fire behaviour classes 27 

that can be easily communicated to both research and management communities and support a wide number of applications. 28 

Analysis also showed that the area burned by a wildfire is mostly determined by its FGR rather than by its forward speed. 29 

Finally, we explored a practical example to show the PT-FireSprd database can be used to study the dynamics of individual 30 

wildfires and build robust case studies for training and capacity building. 31 

The PT-FireSprd is the first open access fire progression and behaviour database in  Mediterranean Europe, dramatically 32 

expanding the extant information. Updating the PT-FireSprd database will require a continuous joint effort by researchers and 33 

fire personnel. PT-FireSprd data are publicly available through https://doi.org/10.5281/zenodo.7495506 (last access: 30th 34 
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December 2022) and have a large potential to improve current knowledge on wildfire behaviour and support better decision-35 

making (Benali et al. 2022). 36 

 37 
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1 Introduction 40 

Wildfire behaviour is broadly defined as the way a free-burning fire ignites, develops and spreads through the landscape (Albini 41 

1984; Rothermel 1972). It depends on complex interactions between fuels, topography and weather, over a wide range of 42 

temporal and spatial scales (Santoni et al., 2011; Countryman, 1972). Wildfire behaviour can be described using common 43 

metrics such as the spread rate, propagation mode, area growth rate, perimeter, rate of energy release and flame size (Albini 44 

1984). Fire behaviour information is important for fire research and management applications  (Finney et al., 2021).  45 

 46 

To allow for a significant progress towards better fire management, the operational and research communities require detailed 47 

open data on observed wildfire behaviour (Gollner et al., 2015). In this context, systematic mapping of the fire front progression 48 

through space and time is critical to address existing needs, for wildfires burning under a wide range of environmental 49 

conditions, including extreme ones (Storey et al., 2021; Gollner et al., 2015). Compiling quality fire behaviour information is 50 

paramount to develop reliable and well-suited fire spread models and for a much-needed extensive evaluation of fire behaviour 51 

predictions, which is crucial for its ultimate aim: support the decision-making process (Alexander and Cruz, 2013a; Scott and 52 

Reinhardt, 2001). This includes planning pre-suppression activities and defining resources dispatch to wildfires, delineating 53 

safe and effective fire suppression strategies and tactics during a wildfire, and for early alert and evacuation purposes  (Finney 54 

et al., 2021). Comprehensive fire progression and behaviour information is also useful to develop burned area/fire perimeter 55 

mapping algorithms (Valero et al., 2018), understand fire effects (Collins et al., 2009), fire danger rating (Parisien et al., 2011), 56 

fire hazard mapping and risk analysis (Alcasena et al., 2021, Palaiologou et al., 2020), planning and implementation of 57 

preventive fuel treatments (Salis et al., 2018), and also to foster robust training of operative personnel and researchers 58 

improving their learnings from past wildfires (Alexander and Thomas, 2003). Unfortunately, reliable quality information on 59 

the progression and behaviour of wildfires, especially those burning under extreme conditions, is difficult to collect (Gollner 60 

et al., 2015). 61 

 62 

Fire behaviour data can be collected from laboratory experiments, experimental fires, prescribed fires or wildfires. A large 63 

number of laboratory-scale experiments have been made for the development of semi-empirical rate-of-spread (ROS) models 64 

(Rothermel 1972; Catchpole et al., 1998). Experimental fires have been set up to collect fireline data, estimate fire behaviour 65 

descriptors and develop empirical fire spread models (Forestry Canada Fire Danger Group 1992; Fernandes et al., 2009; Cruz 66 

et al., 2015; Gollner et al., 2015), requiring significant time and resources. Neither laboratory-scale nor experimental fires 67 

represent the spatial and temporal variability of environmental conditions under which uncontrolled wildfires most often burn 68 

(e.g. Gollner et al., 2015). 69 

 70 

Due to the unpredictability of their timing and location, conventional measurements on wildfires are difficult to perform and 71 

lead to slow accumulation of data (Alexander & Cruz 2013b). Generally, they are of poor quality or incomplete (Duff et al., 72 
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2013), although outstanding reconstruction examples exist (e.g. Wade & Ward 1973; Alexander & Lanoville 1987; Cheney 73 

2010). Dedicated efforts do exist (Vaillant et al., 2014), but wildfire behaviour estimates often result from opportunistic 74 

observations (e.g. Santoni et al., 2011) or post-fire interviews (e.g. Butler and Reynolds, 1997). Some authors have made 75 

relevant efforts in compiling a large amount of direct field observations on wildfire behaviour (Alexander and Cruz, 2006; 76 

Cheney et al., 2012), some combined with experimental fire data (Cruz and Alexander, 2013, 2019; Anderson et al., 2015; 77 

Cruz et al., 2018, 2021, 2022; Khanmohammadi et al., 2022). An additional limitation lies on the fact that some of the existing 78 

fire behaviour datasets are not freely available for the operational and research communities (Gollner et al., 2015). 79 

 80 

Remote sensing technology, either through airborne or satellite platforms, can provide relevant data to document wildfires. 81 

Manned or unmanned airborne visible and infrared (IR) images have been collected to document fire progression, and in some 82 

cases to retrieve fire radiative power estimates (Schag et al., 2021; Storey et al., 2020, 2021; Coen & Riggan 2014; Sharples 83 

et al., 2012). Satellite data provide easy-to-use, autonomous, synoptic observations of fire activity throughout the entire globe. 84 

Recent advances in satellite technology have made available a panoply of imagery and products that range from moderate to 85 

high spatial resolution, and from every 5 days to sub-daily frequency. Several authors have used satellite data to map daily fire 86 

progression at country-level (Parks et al., 2014; Veraverbeke et al., 2014, Briones-Herrera et al., 2020; Sá et al., 2017) and at 87 

the global scale (Artés et al., 2019; Oom et al., 2016). Some have estimated fire behaviour metrics, such as ROS (Humber et 88 

al., 2022; Frantz et al., 2017; Andela et al., 2019). Recently, Chen et al., (2022) improved this line of research by using Visible 89 

Infrared Imaging Radiometer Suite (VIIRS) data to automatically reconstruct sub-daily fire progression at a higher resolution. 90 

Other authors exploited the capabilities of geostationary satellites to monitor wildfires and estimate fire behaviour descriptors 91 

(Sifakis et al., 2011; Storey et al., 2021). 92 

 93 

The different data sources used to characterise wildfire progression and behaviour have inherent limitations and potentialities. 94 

Ground-collected data can be characterised by large uncertainties, particularly when taken by fire personnel whose focus is on 95 

suppression and not on data collection (Alexander and Thomas, 2003). In addition, ground-collected data have poor synoptic 96 

capability and provide a limited representation of fire behaviour variability. For example,  distribution of ROS values for single 97 

fire runs are seldom available (Cruz, 2010). Airborne data can provide wider coverage of the fire progression, however, have 98 

limited temporal acquisition windows (e.g. USFS National Infrared Operations - NIROPS - provides data once per night) and 99 

in some cases require manual digitization of fire perimeters (Veraverbeke et al., 2014).  100 

 101 

The tradeoff between spatial and temporal resolution of satellite data, as well as the presence of clouds and thick smoke can 102 

significantly limit their fire monitoring capability. In addition, the correct location of a wildfire cannot be determined inside a 103 

burning pixel whose size varies with viewing geometry and sensor properties (Wolfe et al., 1998). Daily or sub-daily satellite-104 

derived fire progressions can also fail to reflect the influence of extreme conditions in fire behaviour due to the effect of 105 

averaging over relatively long periods (Collins et al., 2009).  106 
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 107 

Considering that all data sources have limitations and provide information for very limited time frames, combining different 108 

sources is key to capture the spread and behaviour variability of wildfires. The example provided in Figure 1 highlights the 109 

potential of combining different data sources to overcome inherent acquisition gaps, particularly in the afternoon, when both 110 

field and airborne data overcome the satellite gap, and during dawn, when ground-collected and satellite data complement each 111 

other. Note that observation frequencies of ground and airborne data strongly depend on daily fire activity patterns. 112 

 113 

(Figure 1 near here) 114 

 115 

Systematic multi-source acquisition of wildfire data collection was recently done by Kilinc et al., (2012) and Storey et al., 116 

(2020, 2021) for Australia, by Crowley et al., (2019) for Canada (only satellite data) and by Fernandes et al., (2020) at the 117 

global scale. The pursuit of this goal requires a monitoring framework and a concerted joint effort between research and 118 

operational communities (Stocks et al., 2004; McCaw et al., 2012, Storey et al., 2020, 2021). Additional data on constantly 119 

evolving wildfires, accompanied by robust replicable methods, is needed, namely in southern Europe where a substantial data 120 

gap is manifest (Fernandes et al., 2018).  121 

 122 

Here, we present the Portuguese Large Wildfire Spread Database (PT-FireSprd) that combines data from multiple sources, 123 

using a “convergence of evidence” approach to characterise in detail the progression and behaviour of large wildfires in 124 

Portugal. Fire behaviour is described in sensu stricto, thus analysis of its drivers and effects is beyond the scope of the current 125 

work. The work results from a joint co-creation effort between researchers and fire personnel, integrating data collected from 126 

airborne and ground operational resources.  127 

2 Data and Methods 128 

2.1 Overview 129 

We first collected data for all the large wildfires (>100 ha) that occurred in mainland Portugal   between 2015 and 2021. These 130 

large wildfires were responsible for almost 1 million hectares burned during this period, of which half in the extreme fire 131 

season of 2017. About 90% of the total burned area resulted from the 760 larger wildfires. 132 

Multi-source input data (L0, section 2.2) were collected and only wildfires with good quality and representative data were 133 

kept. Fire progressions were reconstructed from the input data and fire behaviour metrics were estimated. The PT-FireSprd 134 

database was then organised in three levels:  135 

● L1: Wildfire Progression (section 2.3), representing the spatial and temporal evolution of the wildfire spread (i.e. 136 

where and when). 137 
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● L2: Wildfire behaviour (section 2.4), including quantitative behaviour descriptors of  how a wildfire burned, such as 138 

the rate-of-spread (ROS), fire growth rate (FGR), fire radiative energy (FRE), and FRE flux; 139 

● L3: Simplified Wildfire behaviour (section 2.5), averaging fire behaviour over longer periods  that represent relatively 140 

homogenous fire runs. 141 

The data from the different levels is composed by a large set of maps that can be useful for several applications and target 142 

users. For example, L1 data can be used by fire analysts or researchers to evaluate suppression strategies and understand the 143 

fire spread drivers or to evaluate burned area/fire perimeter mapping algorithms. L2 data is useful, for example, to calibrate 144 

existing or build better fire spread models, while potential applications of L3 are improving fire danger rating, fire hazard 145 

mapping and risk analysis. The overall flow of the data and methods is described in Figure 2. 146 

 147 

(Figure 2 near here) 148 

 149 

2.2 Input Data (L0) 150 

To reconstruct the wildfire progressions, we used data acquired by satellites, from airborne sources and in the field by fire 151 

personnel. Most of this data is currently integrated in a near-real time operational WEB-GIS fire monitoring platform (in 152 

Portuguese “FEB Monitorização”, hereafter FEBMON) developed in 2018 by the Civil Protection Special Force (FEPC) and 153 

the Portuguese National Authority for Emergency and Civil Protection (ANEPC). The data were complemented with official 154 

fire data (e.g., ignition date and location) and information from external reports. 155 

2.2.1 Satellite data 156 

Satellite data was used to support the reconstruction of past wildfire spread. Currently, there are many sources of open-access 157 

satellite data with capabilities to monitor wildfires over the entire globe. Their characteristics vary in resolution, ranging from 158 

high (10-30 m) to low (4-5 km), and frequency of overpass, ranging from 5-15 days to every 15 minutes. To monitor wildfire 159 

progression, satellites provide imagery and products that identify the location where a fire is actively burning at the time of 160 

overpass (“thermal anomalies” or “active fire” products).  161 

 162 

The Sentinel-2 Multispectral Instrument (MSI) and the Landsat 8\9 Operational Land Imager (OLI) provide images of the 163 

Earth’s surface on average every 5 days when combined. Their spatial resolution ranges between 10 and 60 m depending on 164 

the spectral band. PROBA-V has a lower number of spectral bands (4) when compared with other satellites used and provides 165 

daily images at 300 m of spatial resolution and every 5 days with a 100 m spatial resolution. The VIIRS instrument aboard the 166 

NPP and NOAA-20 satellites, collects data on average twice per day with a resolution varying between 375 m to 750 m, 167 

depending on the spectral band. The Moderate-Resolution Imaging Spectroradiometer (MODIS) is an instrument onboard the 168 

TERRA and AQUA satellites with spatial resolutions ranging from 250 m to 1000 m, depending on the spectral bands, 169 
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providing on average four daily revisits when combined. Sentinel-3 satellites have onboard the Sea and Land Surface 170 

Temperature Radiometer (SLSTR) and the Ocean and Land Color Instrument (OLCI), with spatial resolutions ranging between 171 

500 and 1000 m for the former, and 300 m for the latter. Data is acquired twice per day on average, but the OLCI does not 172 

retrieve nighttime data.  173 

 174 

We used L2 satellite imagery from the above-mentioned sensors to create false colour composites that could highlight burned 175 

areas (low NIR, high SWIR reflectance), active flaming areas (high SWIR and/or TIR reflectance) and unburned vegetation 176 

(high NIR reflectance). The bands used in the false colour composites depend on spectral characteristics of each sensor. Typical 177 

false colour composites contain bands 12-8A-4 of Sentinel-2, bands 7-2-1 for MODIS and bands 1-2-4 for PROBA-V. Most 178 

imagery was downloaded from Sentinel EO Browser (https://apps.sentinel-hub.com/eo-browser/), Worldview 179 

(https://worldview.earthdata.nasa.gov/) and VITO-EODATA (https://www.vito-eodata.be/PDF/) which allow easy and fast 180 

access to historical L2 data.  181 

 182 

To complement the satellite imagery, we used the thermal anomaly products of VIIRS (VNP14IMGML-C1, Schroeder et al., 183 

2014, 2017) and MODIS (MCD14ML-C6, Giglio et al., 2003, 2016), with 375 m and 1 km resolution at nadir, respectively. 184 

Data is available at fuoco.geog.umd.edu and FIRMS (https://firms.modaps.eosdis.nasa.gov/). These products allow estimating 185 

the approximate location and timing of an active wildfire, and also provide an estimate of the fire radiative power (FRP), a 186 

proxy of the radiant energy released per time unit and proxy for fuel consumption and fireline intensity. In addition, coarse 187 

resolution data (~4 km) from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensor onboard the Meteosat 188 

Second Generation (MSG) geostationary satellite, was used to characterise the temporal evolution of fire activity using FRP 189 

estimates every 15’ (Wooster et al., 2015). Data is available at https://landsaf.ipma.pt/en/products/fire-products/frpgrid/. The 190 

FRP detections associated with each wildfire were identified using a spatial-temporal nearest distance algorithm. An empirical 191 

threshold derived from the analysis of a selected number of wildfires was used to account for the satellite pixel geolocation 192 

and temporal reporting uncertainties. For each wildfire, the Fire Radiative Energy (FRE), and associated uncertainties, were 193 

estimated by integrating FRP detections over 30’ periods and by assuming a constant rate of energy release (Eq. 1): 194 

𝐹𝑅𝐸𝑖  =  0.0009 × (∑ 𝐹𝑅𝑃𝑘
2
𝑘=1 ),         (1) 195 

where index i indicates the 30’ bin, index k indicates the 15’ FRP value in MW, and the 0.0009 factor converts the sum into 196 

TJ. 197 

2.2.2 Airborne data 198 

Some aeroplanes and helicopters that operate during wildfires collect photos and videos. Data are collected during the initial 199 

attack (i.e. up to 90 min after the alert) by the heli-brigades of the National Guard (GNR) using their mobile phones, and 200 

occasionally, during extended attack. Aeroplanes, operated by FEPC\ANEPC since 2018, are equipped with a gimbal that 201 
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contains visible and thermal cameras, collecting photos and videos during extended attack. In addition, helicopters that 202 

coordinate aerial suppression, also collect valuable information regarding fire progression. Both data sources collect data only 203 

during daytime, with a very small number of exceptions, at relatively low altitudes.  204 

 205 

These airborne data are systematically uploaded in real-time in FEBMON since 2018, providing high quality information 206 

regarding the probable location of the fire start, active flaming zones, and specially wildfire progression. It is noteworthy to 207 

mention that airborne footage is not synoptic, as different parts of the wildfire (e.g. left flank vs. right flank) are captured at 208 

different moments. These, depending on the fire extent and operational priorities can be characterised by significant time lags.  209 

2.2.3 Ground data 210 

The FEBMON system is linked to user-friendly portable tools that allow collection of georeferenced ground data during 211 

wildfires. These tools are typically installed in mobile phones and tablets and are used by fire personnel from several 212 

organisations (e.g., fire fighters, forest service). Ground-collected data consists of three main types: i) photos and videos; ii) 213 

points that identify active flaming combustion, inactive flaming or smouldering or locations requiring mop-up activities; iii) 214 

polygons that delineate an area burned until the time of acquisition (i.e. fire progression). 215 

 216 

Besides the data automatically linked to FEBMON, valuable ad-hoc information can be used to reconstruct wildfire spread, 217 

such as additional photos and videos captured on the ground, and post-fire interviews. In sum, data collected by fire personnel 218 

in the field provided valuable spatiotemporal information regarding wildfire spread, ignition and/or wildfire re-activation.  219 

2.2.4 Official fire data 220 

The Forest Service (in Portuguese, “Instituto da Conservação Natureza e das Florestas (ICNF)”) provides a fire database with 221 

the final burned area perimeters for the entire country derived from a combination of field work and satellite data 222 

(https://geocatalogo.icnf.pt/). We found some errors in the final perimeters that were corrected manually with Sentinel-2 or 223 

Landsat 8/9 post-fire false colour composites (see section 2.2.1). In addition, for a very limited number of very large multi-224 

day wildfires, we used burned area perimeters provided by the Copernicus Emergency Management Service 225 

(https://emergency.copernicus.eu/mapping/). The Forest Service also provides information regarding the wildfire start 226 

location, mostly based on post-fire investigation done by GNR personnel (SGIF, https://fogos.icnf.pt/sgif2010/). Ignition data 227 

have several known issues (Pereira et al., 2011) the most relevant of which, for the purposes of the present study, is the accuracy 228 

of its exact location. 229 

 230 

ANEPC manages the Operation Decision Support System (SADO) that includes information, such as i) date/hour of the 231 

wildfire alert; ii) ignition location provided by first responders; and iii) a time log that seldom contains useful contextual 232 

information on wildfire location at a given date/hour.  233 
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2.2.4 Reports 234 

We also used ignition and fire progression data published in reports on the dynamics of the very large wildfires of June 2017, 235 

including the Pedrogão Grande wildfire, and October 2017 (Guerreiro et al., 2017, 2018; Viegas et al., 2019). Regarding 236 

Guerreiro et al. (2017, 2018), the primary data sources used to reconstruct the fire progression were satellite imagery, active 237 

fire data and burned area perimeters provided by the Copernicus Emergency Management Service (see 2.2.1). Reports from 238 

ANEPC and the Portuguese Institute for the Sea and the Atmosphere (IPMA, showing the fire plume evolution), GNR and the 239 

Association for the Development and Industrial Aerodynamics (ADAI), were also used to identify fire arrival times and active 240 

firelines. Additionally, other data sources allowed to reconstruct wildfire spread, such as: the official wildfire time log (see 241 

2.2.4) , interviews (fire personnel involved in  suppression, local residents), field work to identify the forward fire spread 242 

direction based on scorched or charred foliage orientation, and other relevant data such as photos and videos. The fire spread 243 

isochrones were determined through spatial interpolation methods (spline and inverse distance weighting), on high density 244 

point clouds and experts’ knowledge.  245 

 246 

Viegas et al., (2019) reconstructed the extreme wildfires of October 2017 based on field work, interviews, photos/videos and 247 

information contained in the official wildfire time log.  Since the fire progression data were not provided by the authors, here 248 

we used only very limited information regarding ignition location\time and general fire spread patterns, mostly to complement 249 

data provided by Guerreiro et al., (2017, 2018).  250 

 251 

We chose to include these fire progressions in our database, because they represent the most extreme wildfires that occurred 252 

in mainland Portugal, under persistent cloud cover conditions that limited the acquisition of satellite data, and for that reason 253 

they constitute relevant case studies, which otherwise would not be represented. 254 

2.3 Wildfire Progression (L1) 255 

Wildfire progression characterises the spatial and temporal evolution of the area burned in a specific fire event. It also contains 256 

information regarding the ignition time and location, as well as, flaming zones that correspond to active areas during the 257 

wildfire. These include spot fires and reactivation/rekindling areas. In Portugal, a rekindle is a reactivation of the wildfire after 258 

its official conclusion and is considered a new incident. For simplicity, we will consider rekindles as reactivations throughout 259 

the rest of the manuscript. 260 

 261 

To robustly reconstruct wildfire progression, we combined the maximum available data from the different sources mentioned 262 

above, with the aim of obtaining convergence of evidence. This allowed reducing the limitations and uncertainties of each 263 

individual data source and building higher confidence in the derived wildfire progression. 264 

 265 
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Combining all the available data , we manually delimited the extent and time of the ignition, fire progression and active flaming 266 

zones of each wildfire. The reconstruction was always made chronologically, i.e. starting from ignition and ending with the 267 

progression prior to wildfire containment. Sentinel-2 and Landsat 8/9 pre-fire images were used to identify areas burned shortly 268 

before the wildfire, and post-fire images were used to correct each progression polygon. As an example, Figure 3 shows how 269 

different data sources were combined to derive the spread of the Castro Marim (2021) wildfire. All wildfire progression items 270 

(L1) were defined as polygons, each with a set of different attributes (explained below). 271 

 272 

(Figure 3 near here) 273 

 274 

Ignition was defined as an area, instead of a point, to account for uncertainties in its location and to have a common data 275 

typology for the entire database, in this case, vector polygons. We used mostly official ignition data and initial attack airborne 276 

photos to define its location. This was complemented with expert knowledge and information from fire personnel to better 277 

define ignition location. For a small set of wildfires (mostly nighttime ignitions), we also used satellite imagery and active-fire 278 

data to identify the ignition area. All ignitions were compared with later fire spread patterns and with the final burned area to 279 

reduce errors and guarantee consistency (e.g. ignition was contained in the final burned area). Regarding ignition time, the 280 

official time of alert was compared with high frequency MSG-SEVIRI FRP detections, to confirm the alert time or, in a very 281 

few cases, to anticipate if energy was released before the official ignition time. In addition, MSG-SEVIRI FRP were also useful 282 

to identify (or confirm) the timing of reactivation. A clear example is shown in Figure 3, where the significant release of energy 283 

around 11:30, combined with ground data, allowed identifying the location and time of the reactivation zone. 284 

 285 

Active flaming zones were mostly derived from ground and/or high spatial resolution satellite imagery. Alternatively, they 286 

were defined based on visual interpretation of multiple moderate resolution satellite imagery and often combined with active 287 

fire data (mostly VIIRS due to its spatial resolution). Inconclusive visual interpretations were discarded, as well as active zones 288 

that did not lead to any relevant subsequent fire spread. The ignition zone and all active flaming zones were always contained 289 

within the subsequent fire spread polygon. 290 

 291 

Wildfire progression was represented by a series of consecutive polygons delineating the temporal evolution of the area burned 292 

by the wildfire. The number of polygons depended on fire size and data availability. The progression polygons were built using 293 

as many data sources as possible, complementing each other in both space and time (see Figure 1). As an example: a common 294 

feature found in the data was a pronounced fire spread during daytime, followed by very limited nighttime progression. In 295 

these cases, first, the nighttime fire progression was delineated using active fire data (mostly VIIRS) and complemented with 296 

ground data, when available. Second, satellite and/or airborne imagery acquired during the following morning were used to 297 

perform any necessary adjustments in the nighttime spread polygon(s). Satellite-derived FRE estimates based on SEVIRI/MSG 298 

were also used to identify if any substantial fire activity occurred between VIIRS/MODIS nighttime overpass and daytime 299 
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imagery (satellite and/or airborne). We assumed that fire activity decreased significantly when the wildfire released less than 300 

0.5 TJ per 30’ period, and anticipated the date/hour of the fire spread polygon accordingly. In smaller wildfires (<500 ha) this 301 

threshold was set to 0.1 TJ. These thresholds were defined empirically (see Discussion section). The entire procedure reduced 302 

the uncertainties associated with the delineation of the nighttime spread polygons. It should be noted that the fire behaviour 303 

within the time span of each progression polygon was unknown and, therefore, was assumed to be free burning in a 304 

homogeneous way (Storey et al., 2021). When data were insufficient to determine when a given area burned, the spread 305 

polygon was flagged as “uncertain”.  306 

 307 

Ignitions/active flaming zones were linked to the resultant spread polygon(s), by assigning a numeric label to a field called 308 

“zp_link”, providing an explicit connection between both, and allowing to track the source of a given burned progression 309 

polygon. When information was insufficient, for example, the start of the progression polygon was unknown, zp_link was 310 

defined as “0”. After all ignition(s), fire progressions and active flaming zones were defined, each wildfire was divided into 311 

burning periods. We assumed that each burning period contained relatively homogeneous fire runs that:  312 

 313 

i) were ignited by the same set of ignitions or active flaming zones;  314 

ii) did not exhibit large fire spread direction shifts (less than 45° of variation);  315 

iii) were not impeded by barriers (e.g. previously burned area) and;  316 

iv) did not exhibit significant changes in fire behaviour (e.g. large ROS variation).  317 

 318 

Regarding the latter criterion, for example daytime and nighttime runs were usually separated in different burning periods even 319 

if criteria (i)-(iii) were fulfilled. By definition, a new active flaming zone always marked the beginning of a new burning 320 

period; however, not all burning periods started with an ignition or active flaming zone, since this depended on data availability.  321 

 322 

When direct evidence of fire spotting was available (i.e. exact location/timing of the spot fire(s), typically from ground and/or 323 

airborne data), if the fire front(s) rapidly  (under 1 hour) coalesced with the original fire front, fire progression was merged 324 

into a single polygon. In the remaining cases, typically associated with medium distance spotting and/or slow burning fire 325 

fronts, the spotting location was defined as a new active flaming zone setting, defining a new burning period. When the exact 326 

location/timing of the spot fire was not available, evidence of spotting consisted of observations of non-contiguous burned 327 

areas that resulted from the same wildfire. These were typically separated by rivers, lakes and settlements. In these cases, due 328 

to lack of data, the polygons separated from the major fire run were defined with zp_link=0 if the distance was larger than 200 329 

m. No fire behaviour descriptors were calculated for these burned areas. 330 

 331 

The definition of the burning period was always dependent on data availability and, in some cases, was subjective. For the 332 

progressions derived using only satellite data, the length of the burning period was mostly determined by the timing of the 333 
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satellite overpass(es) and the FRE temporal evolution. For the progressions derived from more detailed data, the above-334 

mentioned criteria were easier to fulfil. In a few cases, uncertainties in fire progressions led to slightly overlapping periods. 335 

An example is shown in the Results section and implications are addressed in the Discussion section. 336 

  337 

After collecting input data for a large number of wildfires only those with at least one valid progression and a valid 338 

ignition/active flaming zone were kept. We eliminated all suspicious cases where uncertainties were large, for example, due 339 

to the presence of persistent smoke or clouds in the satellite images or absence of valid ground data. The L1 wildfire progression 340 

database was defined by a set of polygons with attribute fields (details in section 3). The date/hour of each ignition(s), fire 341 

spread and active flaming zones (if applicable) were approximated to the nearest 30’ period.  342 

  343 

Fire progression data from external reports were adapted to the rationale of the fire database described above. Findings from 344 

different reports for the same wildfire were compared and satellite data was used to complement and improve the original fire 345 

progressions.  346 

 347 

2.4 Wildfire behaviour (L2) 348 

The estimation of fire behaviour descriptors was supported by the use of spatial graphs. A graph is a mathematical structure 349 

composed of nodes (N) and edges (E), which connect the nodes (Dale and Fortin, 2010). Based on the fire spread polygons 350 

(L1) (Figure 4a), we built a spatial directed graph (or digraph) where each node refers to a spread polygon, and each edge 351 

connects two spread polygons (i.e nodes), with a valid link (i.e. zp_link>0). These two nodes burned at different times, one 352 

earlier (ti) and the other later (tj). The value of each edge was defined as the time elapsed between two nodes (Δtij) (Figure 353 

4b). A node can have an inward edge (where fire is being transmitted from) and an outward edge (where fire is being 354 

transmitted to). 355 

 356 

First, the nodes were connected only if the associated fire progression polygons were contiguous, had the same zp_link value 357 

and burned at different timings. Second, only the edges corresponding to the shortest elapsed time between two nodes were 358 

kept. The digraph allowed to formally structure the connections between fire spread polygons enabling the calculation of fire 359 

behaviour descriptors.  360 

 361 

To allow a better understanding of the methods used, a brief explanation based on the Ourique (2019) wildfire is provided. In 362 

Figure 4, the number of the polygons on the left matches the number of nodes on the right. After its start (1), the wildfire 363 

spread fast  to the south and burned the area delimited by polygon 2 in about 120’. Fire behaviour changed after the head run, 364 

and the left flank became the head and made a run to the southeast, burning the area represented by polygons 4, 5, 6 and 7, in 365 

about 180’. This fire behaviour change observed at t=120’ determined the definition of two burning periods: one corresponding 366 
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to the initial head run, the other corresponding to head run from the left flank. The digraph was built with 7 nodes and 6 edges 367 

with values ranging between 30’ and 120’. 368 

 369 

(Figure 4 near here) 370 

 371 

Based on the fire progression (L1) and the corresponding di-graph, we calculated the following set of fire behaviour descriptors 372 

(L2): forward ROS (m/h), spread direction (° from North), FGR (ha/h), and FRE (TJ). The polygons referring to areas burned 373 

shortly before the fire analysed were removed from L2. 374 

 375 

ROS was calculated for each node (Nj) with a valid inward edge (Eij) connecting it to a prior node (Ni). By definition, the 376 

forward ROS refers to the head of the fire and was calculated considering the longest distance line connecting two consecutive 377 

fire progression polygons (i.e. nodes). representing the fastest spread (Storey et al., 2021). The ground distance (Dij) between 378 

each pair of polygons was calculated as follows:  379 

 380 

● All ground distances between the polygon vertices of Ni and Nj were calculated, using the European Digital Elevation 381 

Model (EU-DEM v1.1, https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1) resampled to 50 m spatial 382 

resolution; 383 

● For each vertex of the Nj polygon, only the shortest distance was kept and the corresponding pair of vertices, from 384 

Ni and Nj, were stored; 385 

● Dij was defined as the maximum of all shortest distances between vertices. 386 

 387 

The ROS was calculated by dividing the distance (Dij) by the time elapsed between the pair of polygons (Δtij) and expressed 388 

in m/h. We divided the ROS calculation in two distinct measures: 389 

 390 

● Partial ROS (hereafter, ROSp) calculated between two consecutive polygons; 391 

● Mean ROS (hereafter, ROSi), calculated between the ignition (or active flaming front) and a given spread polygon. 392 

 393 

The spread direction was calculated using trigonometric rules considering the two above-mentioned vertices between two 394 

polygons. The spread direction was calculated both for ROSp and ROSi, where the difference lies only on the origin polygon. 395 

FGR was calculated dividing the burned area by each polygon/node (Aj) by the time elapsed between polygons (Δtij) and was 396 

expressed in ha/h. An example of the calculation of these fire behaviour descriptors is shown in Figure 5. 397 

 398 

(Figure 5 near here) 399 
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 400 

In addition to the standard fire behaviour descriptors, we also estimated the FRE for each progression polygon. This procedure 401 

raised additional challenges. First, MSG-SEVIRI is affected by clouds and smoke, which can hinder the estimation of FRE for 402 

some periods of the wildfires, or for their entire duration. Second, due to the coarse resolution of MSG-SEVIRI it was not 403 

possible to calculate the FRE for each polygon directly. To circumvent this, FRE was calculated for each 30’ bin from ignition 404 

until the date/hour of the last wildfire spread polygon. In parallel, we estimated the area burned in each spread polygon every 405 

30’, using its start/end dates and assuming a constant FGR. Then, for each 30’ bin, the total FRE was divided by weighting its 406 

value by the proportion of area burned in each spread polygon. Finally, for each spread polygon the 30’ FRE estimates were 407 

summed only if they covered  more than 70% of its duration (Δtij), to ensure that the total FRE was representative. 408 

 409 

We also estimated the FRE flux rate (GJ ha-1 h-1) for each spread polygon by dividing the estimated FRE by the corresponding 410 

burned area extent and its duration (Δtij). As FRE is highly dependent on the extent burning at a given time window, the FRE 411 

flux can provide estimates closer to “instantaneous” values required for other applications. 412 

2.5 Simplified Wildfire behaviour (L3) 413 

We calculated simplified metrics representing a mean fire behaviour across each burning period. This enables higher-level 414 

analysis of the data, but at the cost of losing detail and making simplifications to the calculation of the fire behaviour metrics. 415 

 416 

The simplified ROS corresponded to the ROSi estimated for the last spread polygon of a given burning period i.e. the average 417 

ROS between the start and the end of each burning period. FGR was defined as the sum of the area burned in the period divided 418 

by its duration. The total FRE was calculated considering all energy released by the polygons burning within the burning 419 

period, if FRE estimates covered more than 70% of the area burned. 420 

2.6 Quality Control and Quality Assurance (QC/QA) 421 

All L1 to L2, and L2 to L3 processing was done using Matlab scripts complemented with quality controls checks to identify 422 

errors in the original L1 data. These included simple checks to incorrect field names, incoherent data format (e.g., date/hour), 423 

and consistency on the fire spread structure defined by the di-graphs, as for example: i) time elapsed between node was always 424 

positive;and  ii) every spread polygon with a positive zp_link was always associated with a predecessor valid node (either of 425 

“z” or “p” type), among others. 426 

 427 

During the processing of L1 data to L2, we did frequent quality checks to identify potential errors, for example, null values of 428 

ROS or FGR associated with valid fire spread polygons, fire progression polygons that did not have a known start/end date, or 429 

did not have a known link to a preceding fire source (e.g., active flaming zone). In addition, we selected some wildfires and 430 

https://doi.org/10.5194/essd-2022-475
Preprint. Discussion started: 23 January 2023
c© Author(s) 2023. CC BY 4.0 License.



15 

 

made independent calculations of the ROS and FGR and compared them with the ones estimated using the developed Matlab 431 

code. All these quality control steps assured that the data produced were reliable and of the best possible quality. The process 432 

was iterative, requiring frequent corrections to the L1 data and the re-run of the quality check. 433 

 434 

Finally, for each wildfire we defined a confidence flag that provides an overall information of how reliable the fire progression 435 

data were. Although directly related to L1, ultimately it should also provide the user an estimate of the confidence associated 436 

with L2 and L3. This was defined empirically based on the uncertainties that arose in the process of building the fire progression 437 

polygons and was graded into a 5-level system where 1 refers to the lower quality and 5 to the highest quality (Table A1). 438 

3 Results 439 

3.1 Overview of the PT-FireSprd database 440 

The PT-FireSprd database contains data for 80 large wildfires that occurred between 2015 and 2021. The individual wildfire 441 

burned area extent ranges from 250 to 45,339 ha, with a mean and median area of 5,990 and 1,665 ha, respectively. The 80 442 

wildfires were distributed throughout mainland Portugal, covering a wide range of environmental conditions (Figure 6). The 443 

database spans a wide fire behaviour variability both between (e.g. Figure 6A,B,F) as well as within each wildfire (e.g. Figure 444 

6C,E,D). The total burned area extent of the wildfires contained in the database was around 460,000 ha, which represents about 445 

half of the area burned in the 2015-2021 period. On average, progression was reconstructed for 93% of the area burned by the 446 

80 wildfires, leaving 7% deemed “uncertain”. Wildfire behaviour descriptors were estimated for 88% of the burned area extent 447 

(ca. 400,000 ha). The time elapsed between two consecutive fire progression polygons ranged between 30’ and 14h30 with an 448 

average value of 3h15. The mean duration of the burning periods was around 8h00, with a standard deviation of 4h50.  449 

 450 

(Figure 6 near here) 451 

 452 

A total of 1197 polygons with ROS and FGR estimates (L2) were derived from the progression data. We excluded very small 453 

polygons (<25 ha) from further analysis, resulting in a dataset with 874 observations. Of the 1197 polygons, only 609 had FRE 454 

estimates. Regarding L3 data, ROS and FGR were calculated for 241 burning periods (L3) and total FRE was only estimated 455 

for 162 burning periods.  456 

 457 

Overall, confidence in the database was lower for the earlier years (2015-2016) because input data was mostly from satellites. 458 

In 2017, the quality increased due to the integration of i) ground data and ii) data from external reports that analysed the 459 

extreme wildfires of June and October. From 2018 onwards, the integration of the monitoring aeroplanes, the creation of the 460 

FEBMON system and the rapid availability of all the data that flows through it, significantly improved confidence of the 461 

derived fire progressions. 462 
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 463 

The estimated forward ROS displayed a long-tail distribution (Figure 7, in log-scale) with a median value of 341 m/h and 464 

average ROS of 746 m/h, representing large variability (std = 1071 m/h, cv = 143%). About 20% of the ROS values were 465 

larger than 1000 m/h and about 9% were larger than 2000 m/h. The maximum observed ROS was 8956 m/h in the Lousã 466 

wildfire of October 2017. The FGR distribution was highly skewed towards low values, with median and average values of 40 467 

ha/h and 191 ha/h, respectively (sd = 438 ha/h, cv = 228%). About 10% of the observations had FGR larger than 500 ha/h and 468 

only about 5% were larger than 1000 ha/h. The maximum observed FGR was 4436 ha/h in the Pedrogão Grande wildfire of 469 

June 2017. 470 

 471 

(Figure 7 near here) 472 

 473 

The ROS distributions of the L2 and L3 datasets were similar. The largest differences were located in the lower and upper 474 

tails, where the L3 ROS tends to be smoother due to the averaging procedure done over a longer time span. The FGR 475 

distributions for L2 and L3 were also very similar, probably because all the polygon areas within a burning period are summed, 476 

and the value does not result from an average. Differences were larger for more complex wildfires, for example with “finger 477 

runs” (e.g. areas resulting from rapid propagation in a different direction than the dominant fire front). 478 

 479 

We compared the histograms of L2 ROS and FGR for three aggregated confidence levels. The distribution of ROS estimates 480 

for wildfires with lower confidence was slightly skewed towards lower values, when compared with higher confidence 481 

estimates (Figure B1). The ROS distributions peak at 200 m/h, 500 m/h and 800 m/h for very low/low, moderate and high/very 482 

high confidence, respectively, showing a clear relation between confidence and estimated ROS. Regarding FGR, very high 483 

values above 500 ha/h were prevalent in wildfires with high and very high confidence progressions (Figure B2). Results are 484 

similar if data from external reports for the extreme wildfires from June and October of 2017 are not included. 485 

 486 

Estimated ROS and FGR were compared and percentiles 25, 50, 75, 90 and 97.5 were calculated for each variable 487 

independently (Figure 8). The percentile values were simplified to enable a clear communication of results, especially between 488 

researchers and fire personnel. The percentiles were translated into empirical classes, ranging from “very low” to “extreme” 489 

fire behaviour. In general, as ROS increases so does the FGR. However, the relationship between ROS and FGR depends on 490 

the morphology of the fire perimeter: elongated fast-spreading wildfires had relatively higher ROS and lower FGR (e.g. Figure 491 

6B, C) and more complex burned area perimeters had relatively lower ROS and higher FGR (e.g. a flank run with an extensive 492 

active fireline; see Figure 6A and the last polygons of Figures 6E and 6F). The dispersion tends to increase with higher 493 

ROS/FGR values suggesting a progressively larger dependence on the burned area extent/perimeter. Identification of factors 494 

determining such relationships is beyond the scope of this work. Nevertheless, wildfires with “Extreme” behaviour had both 495 

very high values of ROS and FGR. 496 
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 497 

(Figure 8 near here) 498 

 499 

Burned area extent is a relevant fire behaviour descriptor for researchers and fire management personnel. Analysis suggests 500 

that the area burned by a wildfire is mostly determined by its FGR (r=0.84) rather than by the speed of the forward spread 501 

(r=0.62; Figure 9a,b). The (cor)relations were lower using L2 data. As expected, FRE is highly correlated with burned area 502 

extent (r=0.85, Figure 9c), and consequently of FGR. Correlation between ROS and average rate of energy release (TJ\h) is 503 

lower (r=0.30, Figure 9d), however, there is a general direct relation between both descriptors. 504 

 505 

(Figure 9 near here) 506 

 507 

2.2 Case study: The Castro Marim 2021 wildfire 508 

Here, we describe in detail the progression and behaviour of a specific wildfire to show how the PT-FireSprd database can be 509 

used, for example, to analyse case studies, something often done by researchers and fire analysts.  510 

 511 

The Castro Marim wildfire burned 5950 ha on the 16th and 17th of August of 2021. Figure 10 shows its reconstructed 512 

progression (a) and associated ROS (b). Ignition occurred at nighttime (01:00) and a single run occurred towards SE until 513 

approximately 08:30, defined as the first burning period. The mean ROS was 618 m/h, ranging between 321 and 957 m/h 514 

(Figure 10c). The estimated FGR for the burning period was 43 ha/h, ranging between 33 and 77 ha/h, and the total FRE was 515 

13 TJ (Figure 10d).  516 

 517 

(Figure 10 near here) 518 

 519 

Fire progression halted for about 3h until the wildfire reactivated around 11h30. It spread southwards until the head stopped 520 

in an agricultural area around 19h30. In this second burning period, fire behaviour was significantly different from the first. 521 

The mean ROS was ca. 1500 m/h, reaching a maximum value of 3720m/h between 16:30 and 17:30. On average,  the fire grew 522 

at a rate of 455 ha/h, however, significant variability was observed with values reaching 1236 ha/h coinciding with the ROS 523 

peak. Framing the fire behaviour descriptors with the empirical classes represented in Figure 8, the behaviour in the second 524 

burning period was often framed in the “Very High” class, i.e. between percentiles 90 and 97.5. As a consequence of the 525 

behaviour exacerbation, the wildfire released around 38 TJ, with peaks of about 9 and 12 TJ observed during the afternoon. 526 

The energy flux rate was highest between 16:00 and 16:30, coinciding with an abrupt increase in ROS (Figure 10d).   527 

 528 
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After the fire head stopped, a secondary head run stopped around 23:00 in a previously burned area (burning period 3). In the 529 

follow-up, two left flank runs were observed, one until 02:30 and the other one, resulting from a reactivation, until 06:00, with 530 

decreasing ROS, FGR and FRE. A secondary peak in the energy flux rate was estimated around 0:00, associated with an 531 

increase in ROS and FGR.  532 

 533 

Finally, in the Castro Marim wildfire burning periods 3 and 4 overlapped in time. A progression polygon in the rear/right flank 534 

was delimited by fire personnel at 02:30, however the prior contiguous progression was identified at 16:30, suggesting a very 535 

low burning flank, opposite to the fast burning part of the wildfire southwards. This overlap had no effect on the average ROS, 536 

and only a very slight effect on the estimated FGR and FRE. However, users must be aware that burning periods seldom 537 

overlap (~4% registered in the entire dataset), which may have implications in posterior analysis. 538 

4 Discussion 539 

4.1 The PT-FireSprd database 540 

The PT-FireSprd is the first open access fire progression and behaviour database in the entire Mediterranean Europe. The 541 

progression of 80 large wildfires that occurred in Portugal between 2015-2021 is reconstructed and fire behaviour descriptors 542 

such as ROS, FGR and FRE are estimated, dramatically expanding the extant information (Palheiro et al., 2006; Rodriguez y 543 

Silva & Molina-Martínez 2012; Fernandes et al., 2016). Wildfire progression was derived by converging evidence from 544 

multiple data sources, which provides added credibility to the database. Wide variability in fire behaviour is covered, tackling 545 

an important limitation pointed out by Cruz (2010). The approach presented will be used to update the database in the following 546 

years for Portugal, and can be replicated in other countries, depending on data availability. 547 

 548 

The large number of fire behaviour observations, both at the polygon level (L2) and at the burning period level (L3), provide 549 

enough information for a wide variety of potential applications. For example, it can be used to: i) improve current knowledge 550 

on the drivers affecting the behaviour of large wildfires; ii) calibrate existing or new models which ultimately should help to 551 

better predict fire behaviour and support efficient fire management strategies (Alexander and Cruz, 2013a); iii) support the 552 

construction of case studies by fire analysts and contribute to better training of fire personnel (Alexander and Thomas, 2003); 553 

iv) contribute to improve operational fire suppression strategies; v) better understand how fire behaviour is linked to its effects 554 

(Collins et al., 2009), and v) improve fire danger rating (Wotton, 2009). In addition, the fire behaviour classes described in 555 

Figure 8 can assist fire suppression operations, including resources dispatching and decisions to fight or flee, or offensive vs 556 

defensive strategies. 557 

 558 

For several reasons, it is easier to collect information for larger wildfires than for smaller ones. The wide range in fire size 559 

present in the PT-FireSprd database suggests that it is representative of wildfires burning under a broad range of conditions. 560 
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However, smaller wildfires (between 100 and 500 ha) are slightly under-represented in the database creating a potential bias. 561 

This can be particularly relevant if one considers the proportion of smaller wildfires that occur every year. Thus, fire behaviour 562 

descriptors may also be biased towards larger values which may have an implication, for example, on the fire behaviour classes 563 

defined in Figure 8. Note that for typical fuel loads, say 15-20 t ha-1 (Fernandes et al., 2016), the third class in Fig. 8 already 564 

corresponds to fires very difficult to control directly (Hirsch and Martell 1996). Nevertheless, these classes should be 565 

considered as a first exploratory approach with the aim of creating a simple and clear communication baseline between 566 

researchers and fire personnel based on quantitative fire behaviour data. Ultimately, the database will allow framing the 567 

behaviour of new wildfires according to historical patterns. Adding smaller wildfires to the PT-FireSprd database will certainly 568 

help to better represent a wider range of fire behaviour. 569 

 570 

Confidence in the wildfires of 2015-2016 was lower than for the most recent ones due to relevant advances in operational fire 571 

monitoring resulting in better quality and higher quantity of fire data. Since 2018, the FEBMON system has improved and 572 

grown, providing larger quantity and higher quality data, thus leading to more reliable and detailed fire progression 573 

reconstructions. The distribution of the duration of the spread polygons between 2015 and 2021 (Figure B3) shows 574 

heterogeneity of the database across time, but also the evolution introduced by the implementation of the FEBMON system. 575 

Results suggest that estimates of ROS and FGR might be underpredicted in wildfires with lower confidence, most probably 576 

due to the lack of data to thoroughly cover the afternoon, but especially the early night period (i.e. between VIIRS/MODIS 577 

day and nighttime overpasses, Figure 1). This issue is further discussed in section 5.2. The user must take into account the 578 

characteristics of the database and can choose to use the entire or part of the dataset based on the confidence flag or year of 579 

the wildfire. 580 

 581 

The PT-FireSprd database is flexible and open, allowing the users to subset the data based on their needs and requirements. 582 

For example, users can decide to work with fire behaviour descriptors at the polygon level (L2) or at the burning period (L3), 583 

or can create their own subset depending on their objectives. The dataset is heterogeneous which is reflected in two main 584 

components: the duration of the spread polygons and the burning periods, and the confidence flag associated with each wildfire.  585 

 586 

Regarding the duration, the average time elapsed between two progression polygons was 3h30 and 8h15 for the burning 587 

periods. Durations were large in 2015 and 2016 (median values above 9h), decreased significantly in 2017 with the integration 588 

of hourly isochrones from Guerreiro et al., (2017, 2018), and have had median durations below 2h since 2019 (Figure B3). 589 

Gollner et al., (2015) argued that fire progression observations need to be made in real-time with a 10-metre spatial resolution 590 

every 10’ to meet the needs of fire behaviour forecasting. However, in operational context the current objective is to predict 591 

fire behaviour time intervals larger or equal to 30’ (Cruz and Alexander, 2013). Considering the average duration of the burning 592 

periods, that represent a single fire run, the average time elapsed between progression observations represents a good 593 

compromise and a clear advance in current data. Regardless, users can subset the database based on the duration of either the 594 
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progression polygons or the burning periods. L3 descriptors can be useful to provide more homogeneous and normalised fire 595 

behaviour descriptors, dampening the effect of the large variability in L2 durations, allowing, for example, a better comparison 596 

between wildfires. 597 

 598 

Finally, preliminary results suggest that considering both ROS and FGR can improve understanding of wildfire dynamics. The 599 

relation between both is related to perimeter morphology and extent, and future work is needed to better understand the 600 

underlying factors. Most importantly, FGR was a better explanatory variable of burned area extent than ROS. The practical 601 

consequence is that large burned areas can be generated by wildfires with a moderate forward ROS but with large FGR of the 602 

entire perimeter, which in turn is highly influenced by spread duration and perimeter extent. This should have implications for 603 

both the research and operational communities. FRE was estimated for a lower number of spread polygons and burning periods 604 

when compared with ROS and FGR. This was most likely due to the impact of clouds and smoke on MSG detections and the 605 

relatively conservative minimum number of observations threshold (75%). FRE and burned area extent were closely related, 606 

however, relations between FRE and ROS were poor/moderate. One of the possible reasons may be related with the need to 607 

consider the effect of the active perimeter extent when comparing both descriptors.  608 

4.2 Limitations and future improvements 609 

The generic limitations of the input data have been thoroughly described in Section 1. In particular for Portugal some 610 

limitations of the data must be pointed out. Fire progression perimeters and fire points collected in the ground by fire personnel 611 

have relevant spatio-temporal uncertainties. For example, there is often a lag between the date/hour a polygon is drawn in the 612 

ground and the actual date/hour it burned completely. Another relevant issue is that of data acquisition / reporting errors done 613 

by fire personnel, which may be reduced by improved training and experience. The number of users of the FEBMON system 614 

has been growing in recent years and, with adequate training, it is expected that the quality and quantity of ground data will 615 

increase in upcoming years. In fact, over 27,000 aerial and 2,500 ground photos were taken in the year 2022 which represents 616 

a relevant increase compared to previous years. 617 

 618 

Regarding airborne data, the discussion can be separated into two components. First, initial attack photos, which can be 619 

extremely useful to draw initial fire progression and infer probable ignition areas, are not collected for every wildfire to which 620 

a helicopter is dispatched, and sometimes are of poor quality. Additional training and increasing the awareness of fire personnel 621 

for the relevance of the data they collect is necessary. Second, aeroplane data are acquired at relatively low altitude, precluding 622 

a synoptic view of the wildfire. Time lags between data acquisition for different parts of the wildfire (e.g. left vs. right flanks) 623 

may be large and introduce relevant spatio-temporal uncertainties in the delineation of the fire progression. In addition, 624 

perimeters are drawn manually and depend on the training and experience of the fire expert. In upcoming years, the integration 625 

of new airborne sensors, specially with multispectral capability, the ability to perform high-altitude scans and the use of 626 

automatic perimeter delimitation procedures (e.g., Valero et al., 2018) should improve data quality and reduce the time lags of 627 
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airborne fire observations. With this new capacity, it will be possible to integrate deep learning processes in the data analysis, 628 

increasing both the quantity and quality of the available fire data. This integration will also allow a well-organised structure in 629 

data collection, management and analysis, improving decision-support systems. Finally, the use of UAVs during nighttime 630 

(pioneered in 2022 in Portugal) will complement aeroplane/helicopter data during periods of low data availability.  631 

 632 

Regarding official fire data, errors in the delineation of final burned area perimeters and in the ignition location, often located 633 

outside of the fire perimeter, need to be corrected to increase the quality of the PT-FireSprd database. Regarding satellite data, 634 

implementing (semi-) automatic algorithms to delimit fire perimeters (e.g., Chen et al., 2022) will increase the availability of 635 

fire perimeters and reduce the uncertainties associated with manual perimeter delimitation. Improvements in the spatial 636 

resolution geostationary satellites, such as the recently launched Meteosat Third Generation (MTG), will certainly improve 637 

fire behaviour estimates, as already observed in HIMAWARI-8 and last generation GOES satellites. 638 

 639 

Regarding methodological uncertainties, the major challenge was to assign the correct date/hour to a specific burned area. For 640 

example, when raw data sources indicated that an area burned but active areas were absent or small, there were always 641 

uncertainties as to when it actually burned completely, which could lead to a relevant ROS/growth rate underestimation. These 642 

uncertainties were larger between dusk until VIIRS overpass(es) and between the later and dawn. One approach to reduce 643 

these uncertainties was to use FRE data to monitor the daily cycle of fire activity and help to better define the start/end date of 644 

a progression polygon. The method was empirical and future work is needed to better define the thresholds for setting the 645 

ignition or reactivation times, as well as the end of a fire progression. Exploratory analysis done in a few wildfires of the PT-646 

FireSprd database suggest that FRE has a significant drop after the head of the fire stops, which may take several minutes/hours 647 

until reaching the FRE thresholds used. This moment is commonly accompanied by a flank growth that burns slower and 648 

releases lower amounts of energy. These fire dynamics probably explain why ROS was likely underestimated in low 649 

confidence wildfires and why FGR was less affected by data confidence. Improvements can be achieved in the future, through 650 

the use of more sophisticated methods (e.g. change point detection), more ground observations during the head to flank run 651 

transition, and higher spatial resolution data from geostationary satellites. Part of these improvements can be used to partially 652 

update the 2015-2021 wildfires of the PT-FireSprd database. 653 

 654 

In terms of characterising uncertainties and its effects, future work should also adopt a metrological approach to propagate 655 

uncertainties to the descriptors, providing useful information to users. By providing an uncertainty assessment, the PT-FireSprd 656 

database would be on the pathway of Fiducial Reference Measurement (FRM) compliance. 657 

 658 

The continuous update of the PT-FireSprd database will require a joint effort by researchers and fire personnel. The automation 659 

of data collection procedures (discussed above), as well as dedicated training to fire personnel, are key factors to guarantee 660 

both the quality as well as a sustainable update of the database. In the upcoming years, other fire behaviour descriptors could 661 
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be included such as type of spread (surface vs. crown fire), fireline intensity, flame size, spotting (including maximum distance) 662 

and/or PyroCb occurrence. Finally, methods described in the current work can be, at least partially, applied to many other fire-663 

prone areas of the globe and contribute to the much-needed data on observed wildfire behaviour. 664 

5 Data Availability 665 

The dataset contains generic metadata file with relevant information for each wildfire (Table A2), such as the fire ID, official 666 

incident ID (ANEPC, 13 digit number), fire name, municipality, civil parish, start date, duration (hours), extent (ha), among 667 

others. The fire name was defined as Municipality_DDMMYYYY, where DD is day, MM month and YYYY the year.  In 668 

case more than one wildfire occurred in the same municipality on the same day, we added an additional string at the end of the 669 

fire name (e.g. “_2”). 670 

 671 

The dataset is then divided in 3 Levels, with three corresponding folders: 672 

● Fire Spread (L1): Each year has a separate folder that contains one folder per wildfire labeled with the fire name. It 673 

contains a polygon shapefile with the attributes listed in Table A3.  674 

● Fire behaviour (L2): A single polygon shapefile that contains all wildfires and estimated fire behaviour metrics for 675 

each individual fire spread polygon. The attributes are listed and explained in Table A4. 676 

● Fire behaviour (L3): A single polygons shapefile that contains the simplified fire behaviour metrics calculated for 677 

each burning period. The attributes are described in Table A5.  678 

 679 

The generic metadata is connected to L1 data through the fire name field, and to L2 and L3 through the fire “ID” field. 680 

 681 

The data are freely available at https://doi.org/10.5281/zenodo.7495506 (last access: 30th December 2022; Benali et al. 2022). 682 

We intend to update the database annually with wildfires from the current fire season and implement continuous improvements 683 

to the procedure. Also, if additional information from past wildfires becomes available, we will update the database either by 684 

changing existing fire spread polygons or by adding new wildfires. Updates for future years depend on the availability of input 685 

data and associated funding.  686 

6 Conclusions 687 

The Portuguese Large Wildfire Spread Database (PT-FireSprd) is the first open access fire progression and behaviour database 688 

available within Mediterranean Europe. It includes the reconstruction of the progression of 80 large wildfires that occurred in 689 

Portugal between 2015 and 2021, that was derived by converging evidence from multiple data sources, which provides added 690 

credibility to the database. PT-FireSprd contains a very large number of key fire behaviour observations, such as ROS, FGR 691 
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and FRE. Based on the statistical distribution of ROS and FGR, we defined 6 broad fire behaviour classes that can be easily 692 

communicated to both research and management communities and support a wide number of applications, including better fire 693 

management strategies. The PT-FireSprd has a large potential to contribute to the development of better fire behaviour 694 

prediction tools, improve our current knowledge on wildfire dynamics, foster better operational training and contribute to 695 

better decision-making. The approach will be used to continuously update the database in the following years for Portugal and 696 

can be replicated in other countries/regions, depending on data availability. Improvements in data quality and the 697 

implementation of automated methods are key factors for the regular update of the PT-FireSprd database in the future. 698 

Appendix A: Supporting material for the Methods 699 

(Table A1, Table A2, Table A3, Table A4 and Table A5 near here) 700 

Appendix B: Supporting material for the Results 701 

(Figure B1, Figure B2 and Figure B3 near here) 702 

Author Contribution 703 

AB and FS designed the study. AB, NG, HG, CM, JS carried out data processing and delimited fire progressions. BM carried 704 

out FRE data processing. AB assembled the database, performed data analysis and wrote the first version of the manuscript. 705 

All authors contributed to the interpretation of the results and writing of the manuscript. 706 

Competing interests 707 

The authors declare that they have no conflict of interest. 708 

Acknowledgements 709 

We thank Florian Briquemont for initial data processing and progression delimitation; FEPC personnel that provided relevant 710 

fire to reconstruct some of the wildfires: Pedro Machado, Eduardo Marques, Marco Pires, Marco Lucas, Miguel Martins, 711 

Daniel Santana and Vítor Caramelo. We would also like to thank other fire personnel that provided relevant fire data: João 712 

Pedro Costa (AFOCELCA), José Silva (AFOCELCA), António Louro (CM-Mação), Sónia Oliveira (CM-Mação), Rui Lopes 713 

(CBV Peso da Régua), Amélia Freitas (CM Caminha), Rui Pedro Fernandes (CBV Valença), Carlos Gomes (CBV Boticas), 714 

António Ribeiro (ANEPC), Mário Silvestre (ANEPC), Emanuel Oliveira, and Elisio Pereira (CBV Porto de Mós). Finally, we 715 

would like to thank ANEPC and FEPC for providing full access to their fire data enabling the development of the entire work. 716 

https://doi.org/10.5194/essd-2022-475
Preprint. Discussion started: 23 January 2023
c© Author(s) 2023. CC BY 4.0 License.



24 

 

 717 

This research was supported by the Forest Research Centre, a research unit funded by Fundação para a Ciência e a Tecnologia 718 

I.P. (FCT), Portugal (UIDB/00239/2020), project foRester (PCIF/SSI/0102/2017) and FIRE-MODSAT II (PTDC/ASP-719 

SIL/28771/2017) also funded by FCT.  720 

 721 

Akli Benali was funded by FCT through a CEEC contract (CEECIND/03799/2018/CP1563/CT0003). Nuno Guiomar was 722 

funded by the European Union through the European Regional Development Fund in the framework of the Interreg V-A Spain-723 

Portugal program (POCTEP) under the CILIFO (Ref. 0753_CILIFO_5_E) and FIREPOCTEP (Ref. 724 

0756_FIREPOCTEP_6_E) projects and by National Funds through FCT under the Project UIDB/05183/2020. Paulo 725 

Fernandes contributed in the framework of the FCT-funded project UIDB/04033/2020. Ana Sá was supported under the 726 

framework of the contract-program nr. 1382 (DL 57/2016/CP1382/CT0003). 727 

References 728 

Albini, F. A.: Wildland Fires: Predicting the behavior of wildland fires—among nature's most potent forces—can save lives, 729 

money, and natural resources, Am. Sci., 72(6), 590-597, 1984. 730 

Alcasena, F., Ager, A., Le Page, Y., Bessa, P., Loureiro, C., and Oliveira, T.: Assessing wildfire exposure to communities and 731 

protected areas in Portugal, Fire, 4(4), 82, doi:10.3390/ fire404008, 2021. 732 

Alexander, M., and Cruz, M. G.: Are the applications of wildland fire behaviour models getting ahead of their evaluation 733 

again?, Environ. Model. Softw. (41), 65-71, doi:10.1016/j.envsoft.2012.11.001, 2013. 734 

Alexander M. E., and Cruz M. G.: Evaluating a model for predicting active crown fire rate of spread using wildfire 735 

observations, Can. J. For. Res.,36, 3015–3028, doi:10.1139/x06-174, 2006. 736 

Alexander, M. E., and Lanoville, R. A.: Wildfires as a source of fire behavior data: a case study from Northwest Territories, 737 

Canada. 9th Conf. Fire and Forest Meteorology, April 21-24, San Diego, CA. American Meteorological Society, Boston, Mass, 738 

86-93, 1987. 739 

Alexander, M. E., and Thomas, D. A.: Wildland fire behavior case studies and analyses: Other examples, methods, reporting 740 

standards, and some practical advice, Fire Manag. Today, 63(4), 4-12, 2003 741 

Andela, N., Morton, D. C., Giglio, L., Paugam, R., Chen, Y., Hantson, S., van der Werf, G. R., and Randerson, J. T.: The 742 

Global Fire Atlas of individual fire size, duration, speed and direction, Earth Syst. Sci. Data, 11(2), 529-552, doi:10.5194/essd-743 

11-529-2019, 2019. 744 

Anderson, W. R., Cruz, M. G., Fernandes, P. M., McCaw, L., Vega, J. A., Bradstock, R. A., Fogarty, L .G., Gould, J. B., 745 

McCarthy, G. H., Marsden-Smedley, J. B., Matthews, S., Mattingley, G., Pearce, H .G., and van Wilgen, B. W.: A generic, 746 

empirical-based model for predicting rate of fire spread in shrublands, Int. J. Wildland Fire, 24(4), 443-460, 747 

doi:10.1071/WF14130, 2015. 748 

https://doi.org/10.5194/essd-2022-475
Preprint. Discussion started: 23 January 2023
c© Author(s) 2023. CC BY 4.0 License.



25 

 

Artés, T., Oom, D., De Rigo, D., Durrant, T. H., Maianti, P., Libertà, G., and San-Miguel-Ayanz, J.: A global wildfire dataset 749 

for the analysis of fire regimes and fire behaviour, Sci. Data, 6(1), 1-11, doi:10.1038/s41597-019-0312-2, 2019.  750 

Benali, A., Guiomar, N., Gonçalves, H., Mota, B., Silva, F., Fernandes, P.M., Mota, C., Penha, A., Santos, J., Pereira, J.M.C., 751 

and Sá, A.C.L: The Portuguese Large Wildfire Spread Database (PT-FireSprd),  https://doi.org/10.5281/zenodo.7495506 , 752 

2022. 753 

Briones-Herrera, C. I., Vega-Nieva, D. J., Monjarás-Vega, N. A., Briseño-Reyes, J., López-Serrano, P .M., Corral-Rivas, J. J., 754 

Alvarado-Celestino, E., Arellano-Pérez, S., Álvarez-González, J.G., Ruiz-González, A. D., Jolly, W. M., and Parks, S. A.: 755 

Near real-time automated early mapping of the perimeter of large forest fires from the aggregation of VIIRS and MODIS 756 

active fires in Mexico, Remote Sens., 12(12), 2061, doi:10.3390/rs12122061, 2020. 757 

Butler, B. W., and Reynolds, T. D.: Wildfire case study: Butte City, southeastern Utah, July 1, 1994, USDA For. Serv., Intermt. 758 

Res. Stn., Ogden, UT. Gen. Tech. Rep. INT-GTR-351, doi:10.2737/INT-GTR-351, 1997.  759 

Catchpole, W. R., Catchpole, E. A., Butler, B. W., Rothermel, R. C., Morris, G. A., and Latham, D. J.: Rate of spread of free-760 

burning fires in woody fuels in a wind tunnel, Combust. Sci. Technol., 131(1-6), 1-37, doi:10.1080/00102209808935753, 761 

1998. 762 

Chen, Y., Hantson, S., Andela, N., Coffield, S. R., Graff, C. A., Morton, D. C., Ott, L.E., Foufoula-Georgiou, E., Smyth, P., 763 

Goulden, M .L., and Randerson, J. T.: California wildfire spread derived using VIIRS satellite observations and an object-764 

based tracking system, Sci. Data, 9(1), 1-15, doi:10.1038/s41597-022-01343-0, 2022. 765 

Cheney, N. P., Gould, J. S., McCaw, W .L., and Anderson, W. R.: Predicting fire behaviour in dry eucalypt forest in southern 766 

Australia,. For. Ecol. Manag., 280, 120-131, doi:10.1016/j.foreco.2012.06.012, 2012. 767 

Cheney, N. P.: Fire behaviour during the Pickering Brook wildfire, January 2005 (Perth Hills Fires 71-80), Conserv. Sci. West. 768 

Aust., 7, 451–468, 2010. 769 

Cheney, N., Gould, J., and Catchpole, W.: The Influence of Fuel, Weather and Fire Shape Variables on Fire-Spread in 770 

Grasslands,  Int. J. Wildland Fire, 3, 31, doi:10.1071/WF9930031, 1993.  771 

Coen, J. L., and Riggan, P. J.: Simulation and thermal imaging of the 2006 Esperanza Wildfire in southern California: 772 

application of a coupled weather–wildland fire model, Int. J. Wildland Fire, 23(6), 755-770, doi:10.1071/WF12194, 2014. 773 

Collins, B. M., Miller. J. D., Thode, A. E., Kelly, M., van Wagtendonk, J. W., and Stephens, S. L.: Interactions among wildland 774 

fires in a long- established Sierra Nevada natural fire area, Ecosystems 12, 114–128, doi:10.1007/s10021-008-9211-7, 2019. 775 

Countryman, C. M.: The fire environment concept, USDA Forest Service, Pacific Southwest Range and Experiment Station, 776 

Berkeley, California, USA,  1972. 777 

Crowley, M. A., Cardille, J. A., White, J. C., and Wulder, M. A.: Generating intra-year metrics of wildfire progression using 778 

multiple open-access satellite data streams, Remote Sens. Environ., 232, 111295,  doi:10.1016/j.rse.2019.111295, 2019. 779 

Cruz, M. G., Alexander, M. E., and Kilinc, M.: Wildfire rates of spread in grasslands under critical burning conditions, Fire, 780 

5(2), 55, doi:10.3390/fire5020055, 2022. 781 

https://doi.org/10.5194/essd-2022-475
Preprint. Discussion started: 23 January 2023
c© Author(s) 2023. CC BY 4.0 License.



26 

 

Cruz, M. G., Cheney, N. P., Gould, J. S., McCaw, W. L., Kilinc, M., and Sullivan, A. L.: An empirical-based model for 782 

predicting the forward spread rate of wildfires in eucalypt forests, Int. J. Wildland Fire, 31(1), 81-95, doi:10.1071/WF21068, 783 

2021. 784 

Cruz, M. G., and Alexander, M. E.: The 10% wind speed rule of thumb for estimating a wildfire’s forward rate of spread in 785 

forests and shrublands, Ann. For. Sci., 76(2), 1-11, doi:10.1007/s13595-019-0829-8,2019. 786 

Cruz, M. G., Alexander, M. E., Sullivan, A. L., Gould, J. S., and Kilinc, M.: Assessing improvements in models used to 787 

operationally predict wildland fire rate of spread, Environ. Model. Softw., 105, 54-63, doi:10.1016/j.envsoft.2018.03.027, 788 

2018. 789 

Cruz, M. G., Gould, J. S., Alexander, M. E., Sullivan, A. L., McCaw, W. L., and Matthews, S.: Empirical-based models for 790 

predicting head-fire rate of spread in Australian fuel types, Aust. For., 78(3), 118-158, doi:10.1080/00049158.2015.1055063, 791 

2015. 792 

Cruz, M. G., McCaw, W. L., Anderson, W. R., and Gould, J. S.: Fire behaviour modelling in semi-arid mallee-heath shrublands 793 

of southern Australia, Environ. Model. Softw., 40, 21-34, doi:10.1016/j.envsoft.2012.07.003, 2013. 794 

Cruz, M. G., and Alexander, M. E.: Uncertainty associated with model predictions of surface and crown fire rates of spread, 795 

Environ. Model. Softw., 47, 16-28, doi:10.1016/j.envsoft.2013.04.004, 2013. 796 

Cruz, M. G.: Monte Carlo-based ensemble method for prediction of grassland fire spread, Int. J. Wildland Fire, 19(4), 521-797 

530, doi:10.1071/WF08195, 2010. 798 

Cruz, M. G., Alexander, M.E., and Wakimoto, R.H.: Development and testing of models for predicting crown fire rate of 799 

spread in conifer forest stands, Can. J. For. Res., 35(7), 1626-1639, doi:10.1139/x05-085, 2005. 800 

Dale, M. R. T., and Fortin, M. J.: From graphs to spatial graphs, Annu. Rev. Ecol. Evol. Systs., 21-38, doi:10.1146/annurev-801 

ecolsys-102209-144718, 2010. 802 

Duff, T. J., Chong, D. M., and Tolhurst, K. G.: Quantifying spatio-temporal differences between fire shapes: Estimating fire 803 

travel paths for the improvement of dynamic spread models, Environ. Model. Softw, 46, 33-43, 804 

doi:10.1016/j.envsoft.2013.02.005, 2013. 805 

Fernandes, P. M., Sil, A., Ascoli, D., Cruz, M. G., Rossa, C. G., and Alexander, M. E.: Characterizing fire behavior across the 806 

globe. In: Hood, S. M., Drury, S., Steelman, T., Steffens, R.[eds.]: Proceedings of the Fire Continuum-Preparing for the future 807 

of wildland fire; 2018 May 21-24; Missoula, MT. Proceedings RMRS-P-78. Fort Collins, CO: US Department of Agriculture, 808 

Forest Service, Rocky Mountain Research Station. p. 258-263., 78, 258-263, 2020. 809 

Fernandes, P. M., Sil, A., Ascoli, D., Cruz, M. G., Alexander, M. E., Rossa, C. G., Baeza, J., Burrows, N., Davies, G. M., 810 

Fidelis, A., Gould, J. S., Govender, N., Kilinc, M., and McCaw, L.: Drivers of wildland fire behaviour variation across the 811 

Earth. In: Viegas, D.X. (Ed.), Advances in Forest Fire Research, Chapter 7 – Short contributions, 1267-1270, 812 

doi:10.14195/978-989-26-16-506_154, 2018.  813 

Fernandes, P. M., Barros, A. M., Pinto, A., and Santos, J. A.: Characteristics and controls of extremely large wildfires in the 814 

western Mediterranean Basin, J. Geophys. Res. Biogeosci., 121(8), 2141-2157, doi:10.1002/2016JG003389, 2016. 815 

https://doi.org/10.5194/essd-2022-475
Preprint. Discussion started: 23 January 2023
c© Author(s) 2023. CC BY 4.0 License.



27 

 

Fernandes, P. M., Botelho, H.S., Rego, F.C., and Loureiro, C.: Empirical modelling of surface fire behaviour in maritime pine 816 

stands, Int. J. Wildland Fire, 18(6), 698-710, doi:10.1071/WF08023, 2009. 817 

Finney, M. A., McAllister, S. S., Forthofer, J. M., and Grumstrup, T. P.: Wildland Fire Behaviour: Dynamics, Principles and 818 

Processes, CSIRO Pub., 2021. 819 

Forestry Canada Fire Danger Group: Development and structure of the Canadian Forest Fire Behavior Prediction System. For. 820 

Can., Ottawa, Ont. Inf. Rep. ST-X-3, 1992. 821 

Frantz, D., Stellmes, M., Röder, A., and Hill, J.: Fire spread from MODIS burned area data: Obtaining fire dynamics 822 

information for every single fire, Int. J. Wildland Fire, 25(12), 1228-1237, doi:10.1071/WF16003, 2016. 823 

Giglio, L., Descloitres, J., Justice, C. O., and Kaufman, Y. J.: An enhanced contextual fire de- tection algorithm for MODIS, 824 

Remote Sens. Environ. 87, 273–282, doi:10.1016/S0034-4257(03)00184-6, 2003 825 

Giglio, L., Schroeder, W. and Justice, C. O.: The collection 6 MODIS active fire detection algorithm and fire products. Remote 826 

Sens. Environ., 178, pp.31-41, doi:10.1016/j.rse.2016.02.054, 2016. 827 

Gollner, M., Trouve, A., Altintas, I., Block, J., de Callafon, R., Clements, C., Cortes, A., Ellicott, E., Filippi, J. B., Finney, M., 828 

Ide, K., Jenkins, M.A., Jimenez, D., Lautenberger, C., Mandel, J., Rochoux, M., and Simeoni, A.: Towards data-driven 829 

operational wildfire spread modeling: A report of the NSF-funded WIFIRE workshop, 2015. 830 

Guerreiro, J., Fonseca, C., Salgueiro, A., Fernandes, P., Iglésias, E. L., Neufville, R., Mateus, P., Castellnou, M., Silva, J. S., 831 

Moura, J. M., Rego, F. C., and Caldeira, D.: Análise e apuramento dos factos relativos aos incêndios que ocorreram em 832 

Pedrogão Grande, Castanheira de Pêra, Ansião, Alvaiázere, Figueiró dos Vinhos, Arganil, Góis, Penela, Pampilhosa da Serra, 833 

Oleiros e Sertã, entre 17 e 24 de junho de 2017. Comissão Técnica Independente, Assembleia da República, Lisboa. 834 

https://www.parlamento.pt/Documents/2017/Outubro/RelatórioCTI_VF.pdf, 2017.  835 

Guerreiro, J., Fonseca, C., Salgueiro, A., Fernandes, P., Iglésias, E. L., Neufville, R., Mateus, P., Castellnou, M., Silva, J. S., 836 

Moura, J. M., Rego, F. C., and Caldeira, D.: Avaliação dos Incêndios ocorridos entre 14 e 16 de outubro de 2017 em Portugal 837 

Continental. Comissão Técnica Independente, Assembleia da República, Lisboa. 838 

https://www.parlamento.pt/Documents/2018/Marco/RelatorioCTI190318N.pdf, 2018. 839 

Humber, M., Zubkova, M., and Giglio, L.: A remote sensing-based approach to estimating the fire spread rate parameter for 840 

individual burn patch extraction, Int. J. Remote Sens., 43(2), 649-673, doi:10.1080/01431161.2022.2027544, 2022. 841 

Hirsch, K. G., and Martell, D. L. A review of initial attack fire crew productivity and effectiveness, Int. J. Wildland Fire, 6(4), 842 

199-215, doi:10.1071/WF9960199, 1996. 843 

Khanmohammadi, S., Arashpour, M., Golafshani, E. M., Cruz, M. G., Rajabifard, A., and Bai, Y.: Prediction of wildfire rate 844 

of spread in grasslands using machine learning methods, Environ. Model. Softw., 156, 105507, 845 

doi:10.1016/j.envsoft.2022.105507, 2022. 846 

Kilinc, M., Anderson, W., and Price, B.: The Applicability of Bushfire Behaviour Models in Australia. Victorian Government, 847 

Department of Sustainability and Environment. DSE Schedule 5: Fire Severity Rating Project, Melbourne, VIC. Technical 848 

Report 1, 2012. 849 

https://doi.org/10.5194/essd-2022-475
Preprint. Discussion started: 23 January 2023
c© Author(s) 2023. CC BY 4.0 License.



28 

 

McCaw, W. L., Gould, J. S., Cheney, N. P., Ellis, P. F. M., and Anderson, W. R.: Changes in behaviour of fire in dry eucalypt 850 

forest as fuel increases with age, For. Ecol. Manag. 271, 170-181, doi:10.1016/j.foreco.2012.02.003, 2012 851 

Oom, D., Silva, P. C., Bistinas, I., and Pereira, J. M. C.: Highlighting biome-specific sensitivity of fire size distributions to 852 

time-gap parameter using a new algorithm for fire event individuation, Remote Sens., 8(8), 663, doi:10.3390/rs8080663, 2016. 853 

Palaiologou, P., Kalabokidis, K., Ager, A. A., and Day, M. A.: Development of Comprehensive Fuel Management Strategies 854 

for Reducing Wildfire Risk in Greece, Forests, 11(8), 789, doi:10.3390/f11080789, 2020. 855 

Palheiro, P. M., Fernandes, P. M., Cruz, M. G.: A fire behaviour-based fire danger classification for maritime pine stands: 856 

comparison of two approaches, For. Ecol. Manag., (234), S54, doi:10.1016/j.foreco.2006.08.075, 2006. 857 

Parisien M. A., Parks S. A., Miller C., Krawchuk M. A., Heathcott M., and Moritz M. A.: Contributions of ignitions, fuels, 858 

and weather to the burn probability of a boreal landscape, Ecosystems 14, 1141–1155, doi:10.1007/s10021-011-9474-2, 2011. 859 

Parks, S. A.: Mapping day-of-burning with coarse-resolution satellite fire-detection data, Int. J. Wildland Fire, 23(2), 215-223, 860 

doi:10.1071/WF13138, 2014. 861 

Pereira, M. G., Malamud, B. D., Trigo, R. M., and Alves, P.I.: The history and characteristics of the 1980–2005 Portuguese 862 

rural fire database, Nat. Hazards Earth Syst. Sci., 11(12), 3343-3358, doi:10.5194/nhess-11-3343-2011, 2011. 863 

Rodríguez y Silva, F., and  Molina-Martínez, J.R.: Modeling Mediterranean forest fuels by integrating field data and mapping 864 

tools, Eur. J. For. Res., 131, 571–582, doi:10.1007/s10342-011-0532-2, 2012. 865 

Rothermel, R.C.: A mathematical model for predicting fire spread in wildland fuels, Res. Pap. INT-115. Ogden, UT: U.S. 866 

Department of Agriculture, Intermountain Forest and Range Experiment Station, 1972. 867 

Sá, A. C., Benali, A., Fernandes, P. M., Pinto, R. M., Trigo, R. M., Salis, M., Russo, A., Jerez, S., Soares, P. M. M., Schroeder, 868 

W., and Pereira, J. M. C.: Evaluating fire growth simulations using satellite active fire data, Remote Sens. Environ., 190, 302-869 

317, doi:10.1016/j.rse.2016.12.023, 2017. 870 

Salis, M., Del Giudice, L., Arca, B., Ager, A. A., Alcasena-Urdiroz, F., Lozano, O., Bacciu, V., Spano, D., and Duce, P.: 871 

Modeling the effects of different fuel treatment mosaics on wildfire spread and behavior in a Mediterranean agro-pastoral area. 872 

J. Environ. Manage., 212, 490-505, doi:10.1016/j.jenvman.2018.02.020, 2018. 873 

Santoni, P.-A., J.-B. Filippi, J.-H. Balbi, and Bosseur, F.: Wildland fire behaviour case studies and fuel models for landscape-874 

scale fire modeling, J. Combust., 613424, doi:10.1155/2011/613424, 2011.  875 

Schag, G. M., Stow, D. A., Riggan, P. J., Tissell, R. G., and Coen, J. L.: Examining landscape-scale fuel and terrain controls 876 

of wildfire spread rates using repetitive airborne thermal infrared (ATIR) imagery, Fire, 4(1), 6, doi:10.3390/fire4010006, 877 

2021. 878 

Schroeder, W., Oliva, P., Giglio, L., and Csiszar, I. A.: The New VIIRS 375 m active fire detection data product: Algorithm 879 

description and initial assessment, Remote Sens. Environ., 143, 85-96, doi:10.1016/j.rse.2013.12.008, 2014. 880 

Schroeder, W.: Visible Infrared Imaging Radiometer Suite (VIIRS) 375 m & 750 m Active Fire Detection Data Sets Based on 881 

NASA VIIRS Land Science Investigator Processing System (SIPS) Reprocessed Data—Version 1. 2017. 882 

https://doi.org/10.5194/essd-2022-475
Preprint. Discussion started: 23 January 2023
c© Author(s) 2023. CC BY 4.0 License.



29 

 

Scott, J. H., and Reinhardt, E. D.: Assessing Crown Fire Potential by Linking Models of Surface and Crown Fire Behavior, 883 

US Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins, CO. Research Paper RMRS-884 

RP-29, doi:10.2737/RMRS-RP-29, 2001. 885 

Sharples, J. J., McRae, R. H., and Wilkes, S. R.: Wind–terrain effects on the propagation of wildfires in rugged terrain: fire 886 

channelling, Int. J. Wildland Fire, 21(3), 282-296, doi:10.1071/WF10055, 2012. 887 

Sifakis, N. I., Iossifidis, C., Kontoes, C., and Keramitsoglou, I.: Wildfire detection and tracking over Greece using 888 

MSG‑SEVIRI satellite data, Remote Sens., 3(3), 524-538, doi:10.3390/rs3030524, 2011. 889 

Stocks, B. J., Alexander, M. E., Wotton, B. M., Stefner, C. N., Flannigan, M. D., Taylor, S. W., Lavoie, N., Mason, J. A., 890 

Hartley, G. R., Maffey, M. E., Dalrymple, G. N., Blake, T. W., and Cruz, M. G., Lanoville, R. A.: Crown fire behaviour in a 891 

northern jack pine black spruce forest, Can. J. For. Res. 34, 1548-1560, doi:10.1139/x04-054, 2004. 892 

Storey, M. A., Price, O. F., Sharples, J. J., and Bradstock, R. A.: Drivers of long-distance spotting during wildfires in south-893 

eastern Australia, Int. J. Wildland Fire, 29(6), 459-472, doi:10.1071/WF19124, 2020. 894 

Storey, M. A., Bedward, M., Price, O. F., Bradstock, R. A., and Sharples, J. J.: Derivation of a Bayesian fire spread model 895 

using large-scale wildfire observations, Environ. Model. Softw., 144, 105127, doi:10.1016/j.envsoft.2021.105127, 2021. 896 

Vaillant, N. M., Ewell, C.M., and Fites-Kaufman, J. A.: Capturing crown fire behavior on wildland fires - the Fire Behavior 897 

Assessment Team in action, Fire Manag. Today 73(4):41-45, 2014.  898 

Valero, M. M., Rios, O., Pastor, E., and Planas, E.: Automated location of active fire perimeters in aerial infrared imaging 899 

using unsupervised edge detectors, Int. J. Wildland Fire, 27(4), 241-256, doi:10.1071/WF17093, 2018. 900 

Veraverbeke, S., Sedano, F., Hook, S. J., Randerson, J. T., Jin, Y., and Rogers, B. M.: Mapping the daily progression of large 901 

wildland fires using MODIS active fire data, Int. J. Wildland Fire, 23(5), 655-667, doi:10.1071/WF13015, 2014. 902 

Viegas, D. X., Almeida, M. F., Ribeiro, L. M., Raposo, J., Viegas, M. T., Oliveira, R., Alves, D., Pinto, C., Rodrigues, A., 903 

Ribeiro, C., Lopes, S., Jorge, H., and Viegas, C. X.: Análise dos Incêndios Florestais Ocorridos a 15 de outubro de 2017, 904 

Centro de Estudos sobre Incêndios Florestais (CEIF/ADAI/LAETA), 2019.  905 

Wade, D. D., and Ward, D. E.: An analysis of the Air Force Bomb Range Fire. Res. Pap. SE–105. Asheville, NC, USDA 906 

Forest Service, Southeastern Forest Experiment Station, 1973. 907 

Wolfe, R. E., Roy, D. P., and Vermote, E.: MODIS land data storage, gridding, and compositing methodology: level 2 grid, 908 

IEEE Trans. Geosci. Remote Sens. 36, doi:10.1109/36.701082, 1998. 909 

Wooster, M. J., Roberts, G., Freeborn, P. H., Xu, W., Govaerts, Y., Beeby, R., He, J., Lattanzio, A., Fisher, D., and Mullen, 910 

R.: LSA SAF Meteosat FRP products – Part 1: Algorithms, product contents, and analysis, Atmos. Chem. Phys., 15, 13217–911 

13239, doi:10.5194/acp-15-13217-2015, 2015. 912 

Wotton, B. M.: Interpreting and using outputs from the Canadian Forest Fire Danger Rating System in research applications, 913 

Environ. Ecol. Stat., 16(2), 107-131, doi:10.1007/s10651-007-0084-2, 2009. 914 

 915 

  916 

https://doi.org/10.5194/essd-2022-475
Preprint. Discussion started: 23 January 2023
c© Author(s) 2023. CC BY 4.0 License.



30 

 

Figures 917 

 918 

 919 

Figure 1: Hourly frequency of observations in active wildfires acquisitions for satellite, field and airborne data. The data used refers 920 
to the year 2019 as an example. The frequency is normalised by dividing the number of observations by the total of each data source. 921 
Sentinel-2, Landsat and PROBA-V refer to the temporal windows and not the frequency, since all of the data are acquired in a very 922 
short window. The time windows of Sentinel-3 are similar to those of MODIS. MSG-SEVIRI data are not represented since it has a 923 
15’ frequency. Acronyms are described in the Data and Methods section. 924 

 925 
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 927 

Figure 2: Flowchart that represents an overview of the data and methods used in the development of the PT-FireSprd database. 928 

 929 

930 
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 932 

Figure 3: Example of multi-source data integration to derive fire perimeters and reconstruct the progression of the Castro Marim 933 
(2021) wildfire. The lines represent different progression polygons. Photos A, B, C, D were kindly provided by ANEPC\FEPC 934 
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 935 

 936 

Figure 4: Example of how the estimated fire progression (a) of the Ourique 2019 wildfire was used to build the digraph (b). 937 
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 939 

 940 

Figure 5: Example of how the fire behaviour descriptors are calculated based on the Proença-a-Nova (2020) wildfire: a) partial fire 941 
progression; b) procedure to calculate the distance for each vertex of the pair of consecutive polygons; and c) estimated main spread 942 
axis and associated fire behaviour descriptors.943 
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 944 

 945 

Figure 6: Overall spatial distribution of the wildfire perimeters in the PT-FireSprd database, with examples of ROS estimates for 6 946 
wildfires: A-Paredes de Coura (2016); B-Chaves (2020); C-Idanha-a-Nova (2020); D-Pedrógão Grande (2017); E-Aljezur (2020); F-947 
Alcobaça (2017).948 

 949 

 950 
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 952 

Figure 7: Histogram of the estimated ROS and FGR for L2 and L3 data (in log-scale). Each point represents the frequency in evenly 953 
spaced bins on a logarithmic scale. 954 
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 956 

 957 

Figure 8: Distribution of the estimated partial rate-of-spread (ROSp) and FGR (L2). Each point represents a wildfire progression 958 
with at least 25 ha of extent. The percentiles were calculated for each variable separately (n=874). 959 
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 960 
 961 

Figure 9: Comparison between simplified wildfire behaviour descriptors (L3): burned area extent and ROS (a), burned area extent 962 
and FGR (b), burned area extent and FRE (c), and ROS and average rate of energy release (d). The latter was calculated dividing 963 
the total FRE by the burning period duration. 964 
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 965 
 966 

Figure 10: The Castro Marim (2021) wildfire progression (a). Wildfire behaviour descriptors include: the spatial distribution of 967 
ROS (b); the temporal distribution of ROS and FRE flux rate (c); and the temporal distribution of FRE and FGR (d). Plots (c) and 968 
(d) start at 01:00 of the 16th of August and end at 06:00 of the 17th of August.  969 
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 971 

Figure B1: Histogram of the estimated ROS (L2) for three aggregated levels of confidence. L2 ROS estimates were used and the 972 
confidence flags are explained in Table A1. 973 
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 974 

Figure B2: Histogram of the estimated FGR for three levels of confidence. L2 FGR estimates were used and the confidence flags are 975 
explained in Table A1.  976 
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 977 

 978 

Figure B3: Distribution of the duration of the progression polygons divided by years  979 
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Tables 980 

Table A1. Confidence flag value, class and interpretation. The flag is defined for each wildfire. 981 

Flag value Flag Class Interpretation 

1  Very Low The major fire progressions were observed only with satellite data, with important associated 

uncertainties. 

2   Low The major fire progressions were observed only with satellite data with moderate uncertainties 

3 Moderate The major fire progressions were observed with satellite data with low/moderate uncertainties 

and complemented with other sources. 

4 High The major fire progressions were at least partially observed with ground and airborne data, with 

relevant uncertainties associated (e.g. the exact hour of an important progression, or a flank 

position, etc) 

5 Very High The major fire progressions were observed with ground and airborne data with low uncertainties 

  982 
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Table A2. Database metadata list for L1 983 

ID Fire Name Municipality Civil  

Parish 

Start  

Date 

End  

Date 

Extent 

(ha) 

Confidence 

flag 

ANEPC 

incident ID 

P1 P2 

1 Gouveia_10082015 Gouveia Mangualde da 

Serra 

2015-08-10 2015-08-12 2513 2 2015090024014 99 86 

2 Oleiros_03082015 Oleiros Alvaro 2015-08-03 2015-08-04 853 2 2015050020535 100 95 

3 VilaNovadeCerveira_08082015 Vila Nova de 

Cerveira 

Candemil 2015-08-08 2015-08-09 2988 3 2015160019994 87 87 

4 Agueda_08082016 Águeda Préstimo 2016-08-08 2016-08-12 7317 1 2016010058351 99 63 

5 Anadia_10082016 Anadia V.N. de 

Monsarros 

2016-08-10 2016-08-12 3370 2 2016010059055 97 80 

6 ArcosdeValdevez_08082016 Arcos de 

Valdevez 

Cabana Maior 2016-08-08 2016-08-11 5806 1 2016160022311 93 71 

7 Arouca_08082016 Arouca Janarde  2016-08-08 2016-08-14 23547 2 2016010058554 97 96 

8 Boticas_05092016 Boticas Codecoso 2016-09-05 2016-09-07 1694 3 2016170021732/ 

2016170021835 

97 97 

9 CabeceirasdeBasto_06092016 Cabeceiras de 

Basto 

Rio Douro 2016-09-06 2016-09-07 1336 2 2016030067614 100 100 

10 Caminha_09082016 Caminha Argela 2016-08-09 2016-08-11 1628 1 2016160022551 99 61 

11 Cinfaes_07082016 Cinfães Cinfães 2016-08-07 2016-08-08 567 1 2016180042605 95 95 

12 Cinfaes_08082016 Cinfães Oliveira do 

Douro 

2016-08-08 2016-08-09 756 2 2016180042656 100 100 

13 FreixodeEspadaaCinta_06092016 Freixo de 

Espada a Cinta 

Freixo Espada à 

Cinta e Mazouco 

2016-09-06 2016-09-07 5194 3 2016040027372 99 97 

14 Moncao_06092016 Monção Riba de Mouro 2016-09-06 2016-09-07 656 2 2016160025950 71 58 

15 Moncao_09082016 Monção Barroças e Taias 2016-08-09 2016-08-11 1115 1 2016160022460 77 77 

16 ParedesdeCoura_07082016 Paredes de 

Coura 

Meixedo 2016-08-07 2016-08-12 10457 2 2016160022456 100 96 

17 PontedeLima_08082016 Ponte de Lima Calheiros 2016-08-08 2016-08-09 739 1 2016160022390 91 75 

18 SeverdoVouga_09082016 Sever do Vouga Pessegueiro do 

Vouga 

2016-08-10 2016-08-12 1818 3 2016010058973 96 94 

19 VieiradoMinho_10082016 Vieira do Minho Rossas 2016-08-10 2016-08-11 1637 2 2016030060428 99 96 

20 Resende_17082017 Resende S. Martinho de 

Mouros 

2017-08-17 2017-08-21 544 1 2017180043566 84 38 

21 RibeiradePena_15082017 Ribeira de Pena Cerva 2017-08-15 2017-08-16 507 1 2017170021591 100 100 

22 CastroDaire_05102017 Castro Daire Almofala 2017-10-05 2017-10-05 701 2 2017180054022 99 99 

23 Mortagua_07102017 Mortagua Espinho 2017-10-07 2017-10-08 961 2 2017180054507 99 99 

24 Mirandela_16072017 Mirandela Alvites 2017-07-16 2017-07-17 949 2 2017040020105 100 88 

25 Pombal_06102017 Pombal Abiul 2017-10-06 2017-10-07 1225 2 2017100054724 100 100 

26 TorredeMoncorvo_18072017 Torre de 

Moncorvo 

Acoreira 2017-07-18 2017-07-18 1536 3 2017040020365 100 100 

27 Guarda_23082017 Guarda Fernão Joanes 2017-08-23 2017-08-25 3457 3 2017090026098 91 91 

28 Serta_08092017 Serta Pedrogao 

Pequeno 

2017-09-08 2017-09-09 4177 3 2017050027511 100 100 
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29 Abrantes_09082017 Abrantes Aldeia do Mato 2017-08-09 2017-08-10 4357 3 2017140045924 83 79 

30 CasteloBranco_23072017 Castelo Branco Santo André das 

Tojeiras 

2017-07-23 2017-07-28 4569 3 2017050023219 97 85 

31 Serta_15102017_2 Serta Pedrógão 

Pequeno 

2017-10-15 2017-10-16 2320 3 2017050030728 54 54 

32 CasteloBranco_13082017 Castelo Branco Louriçal do 

Campo 

2017-08-13 2017-08-15 6173 2 2017050025136 100 96 

33 PampilhosadaSerra_06102017 Pampilhosa da 

Serra 

Fajao 2017-10-06 2017-10-09 7217 2 2017060044928 97 96 

34 Guarda_17072017 Guarda Rochoso 2017-07-17 2017-07-18 7523 2 2017090021641 88 88 

35 FigueiradaFoz_15102017 Figueira da Foz Quiaios 2017-10-15 2017-10-17 15141 4 2017060046330 100 97 

36 Oleiros_23082017 Oleiros Cambas 2017-08-23 2017-08-25 7985 3 2017050026111 88 67 

37 Gois_17062017 Gois Alvares 2017-06-17 2017-06-22 15852 3 2017060026571 100 99 

38 Alcobaca_15102017 Alcobaca Pataias 2017-10-15 2017-10-16 18575 4 2017100056537 

/2017100056554 

100 100 

39 Arganil_15102017 Arganil Coja 2017-10-15 2017-10-16 31970 3 2017060046312 

/2017090031521 

100 99 

40 Serta_15102017 Serta Figueiredo 2017-10-15 2017-10-17 30974 4 2017050030693 97 97 

41 Alvaiazere_11082017 Alvaiazere Pussos 2017-08-11 2017-08-19 23715 2 2017100043917/ 

2017050025201 

99 52 

42 PedrogaoGrande_17062017 Pedrogao 

Grande 

Pedrogao Grande 2017-06-17 2017-06-19 29456 4 2017100032538 92 91 

43 Serta_23072017 Serta Várzea dos 

Cavaleiros 

2017-07-23 2017-07-27 33401 3 2017050023195 97 96 

44 Lousa_15102017 Lousã Vilarinho 2017-10-15 2017-10-17 45249 4 2017060046260 100 95 

45 Agueda_15102017 Agueda Albitelhe 2017-10-15 2017-10-16 9095 3 2017180056272 83 78 

46 OliveiraFrades_15102017 OliveiraFrades Varzielas 2017-10-15 2017-10-17 9297 3 2017180056290 99 97 

47 Monchique_03082018 Monchique Monchique 2018-08-03 2018-08-08 26227 3 2018080033743 93 82 

48 Agueda_05092019 Agueda Macinhata do 

Vouga 

2019-09-05 2019-09-06 1602 3 2019010072794 89 84 

49 Alijo_24072019 Alijo Vila Verde 2019-07-24 2019-07-24 574 5 2019170019467 100 100 

50 Baiao_04092019 Baião Teixeira 2019-09-05 2019-09-06 728 3 2019130150620 75 73 

51 Nisa_01082019 Nisa Tolosa 2019-08-01 2019-08-01 712 5 2019120016787 99 98 

52 Ourique_10062019 Ourique Monte Lavarjao 2019-06-10 2019-06-10 554 5 2019020015472 75 75 

53 Penedono_21072019 Penedono Beselga 2019-07-21 2019-07-23 736 4 2019180039496 99 99 

54 Sabugal_29082019 Sabugal Vale Mourisco 2019-08-29 2019-08-29 578 5 2019090029579 100 100 

55 Serta_13092019 Sertã Marmeleiro 2019-09-13 2019-09-14 676 4 2019050028005 100 90 

56 Tomar_03082019 Tomar São Pedro Tomar 2019-08-03 2019-08-03 511 4 2019140045796 86 73 

57 Valenca_04092019 Valença Cerdal 2019-09-04 2019-09-05 642 1 2019160026115 83 83 

58 Valpacos_13092019 Valpaços Ervões 2019-09-13 2019-09-13 738 2 2019170026369 56 56 

59 ViladeRei_20072019 Vila de Rei Fundada 2019-07-20 2019-07-22 9305 3 2019050022178 99 99 

60 MirandadoCorvo_13092019 Miranda do 

Corvo 

Moinhos 2019-09-13 2019-09-14 540 3 2019060042282 96 96 
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61 Fundao_07082020 Fundão Capinha 2020-08-07 2020-08-08 472 4 2020050018968 87 85 

62 Silves_06072020 Silves Boião 2020-07-06 2020-07-06 520 4 2020080025576 77 77 

63 Avis_21072020 Avis Montes Juntos 2020-07-21 2020-07-21 698 5 2020120014122 95 95 

64 IdanhaaNova_30062020 Idanha-a-Nova Salvaterra do 

Extremo 

2020-06-30 2020-06-30 728 4 2020050015270 100 100 

65 SaoJoaoPesqueira_10072020 São João da 

Pesqueira 

Riodades 2020-07-10 2020-07-11 770 4 2020180031783 97 94 

66 Fundao_06082020 Fundao Bogas Baixo 2020-08-06 2020-08-06 749 5 2020050018872 96 96 

67 PortoMos_06092020 Porto de Mós Codacal 2020-09-06 2020-09-07 998 4 2020100046280 97 91 

68 OliveiraFrades_07092020 Oliveira de 

Frades 

Antelas 2020-09-07 2020-09-08 1902 3 2020180044235 86 73 

69 Aljezur_19062020 Aljezur Bordeira 2020-06-19 2020-06-20 2243 5 2020080023014 99 93 

70 Sernancelhe_06082020 Sernancelhe Lapa 2020-08-06 2020-08-06 2213 5 2020180037681 100 100 

71 Chaves_30072020 Chaves Vila Verde da 

Raia 

2020-07-30 2020-07-31 2508 3 2020170018342 83 82 

72 Oleiros_25072020 Oleiros Sardeiras de 

Baixo 

2020-07-25 2020-07-27 5564 3 2020050017687 95 92 

73 ProencaaNova_13092020 Proenca-a-Nova Cunqueiros 2020-09-13 2020-09-14 14568 4 2020050022403 91 91 

74 CasteloBranco_29082020 Castelo Branco Ponsul 2020-08-29 2020-08-29 315 4 2020050021105 100 92 

75 CastroDaire_07092020 Castro Daire Cujo 2020-09-07 2020-09-07 452 4 2020180044155 76 76 

76 Odemira_18082021 Odemira João Martins 2021-08-18 2021-08-19 944 5 2021020019189 100 98 

77 CastroMarim_16082021 Castro Marim Pernadeira 2021-08-16 2021-08-17 5956 5 2021080035488 100 99 

78 Monchique_17072021 Monchique Tojeiro 2021-07-17 2021-07-18 1900 4 2021080029244 99 99 

79 FreixoEspadaaCinta_20082021 Freixo de 

Espada à Cinta 

Lagoaça 2021-08-20 2021-08-20 412 4 2021040023667 71 71 

80 Mogadouro_20072021 Mogadouro Tó 2021-07-20 2021-07-20 253 5 2021040019425 99 98 

p1: stands for percentage of known fire progression (%); p2: stands for percentage fire behaviour descriptors calculated (%)  984 
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Table A3. Attribute fields of the fire progressions (L1) 985 

Field Description Possible values 

id Polygon ID >0 

type Type of Spread Polygon p - wildfire progression ; z - ignition or active flaming zone ;  

a - previously burned area 

date_hour Date and hour of the polygon yyyy-mm-dd hh:mm; uncertain ; na (not applicable) 

source Source of the data fserv - forest service ; sat - satellite data ; airb - airborne data; fops - fire personnel; ek 

- expert knowledge; rep - external reports 

zp_link Numerical link between a ignition or 

active flaming zone (“z”) polygon and a 

wildfire progression (“p”) polygon 

1,2,3... - the link between types "p" and "z" with known dates and hours; 0 - used for 

type "a" or  when progression in "uncertain" or  when the link between "p" and "z" is 

unknown 

burn_period Burning period 1,2,3,..; 0 for the same cases as “zp_link”. 

  986 
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Table A4. Attribute fields of the fire behaviour database  (L2) 987 

Field Description Possible values 

fid Fire ID 1-80* 

fname Fire Name Municipality_StartDate (e.g. Gouveia_10082015) 

year Year 2015-2021* 

type Type of Spread Polygon p - wildfire progression ; z - ignition or active flaming zone ;  

a - previously burned area 

sdate Start date and hour of the polygon yyyy-mm-dd hh:mm; uncertain ; na (not applicable) 

edate End date and hour of the polygon yyyy-mm-dd hh:mm; uncertain ; na (not applicable) 

inidoy Start day-of-year of the polygon (hours in decimal values) 1 to 366; -1 for uncertain progression polygons, polygons with 

unknown zp_link and previously burned areas 

enddoy End day-of-year of the polygon (hours in decimal values) 1 to 366; -1 for uncertain progression polygons, polygons with 

unknown zp_link and previously burned areas 

source Source of the data fserv - forest service ; sat - satellite data ; airb - airborne data; fops 

- fire personnel; ek - expert knowledge; rep - external reports 

zp_link Numerical link between a ignition or active flaming zone 

(“z”) polygon and a wildfire progression (“p”) polygon 

1,2,3... - the link between types "p" and "z" with known dates and 

hours; 0 - used for type "a" or  when progression in "uncertain" or  

when the link between "p" and "z" is unknown 

burn_period Burning period 1,2,3,..; 0 for the same cases as “zp_link”. 

area Burned area extent (ha) > 0 for progression polygons, -1 for ignition or active flaming 

zones. 

growth_rate Fire growth rate (ha/h) >0 for progression polygons with zp_link value >0; -1 for 

previously burned areas or uncertain progression polygons 

ros_i Average rate-of-spread (m/h) calculated since ignition\active 

flaming areas or a progression marking the start of the 

burning period 

>0 for progression polygons with zp_link value >0; -1 for 

previously burned areas or uncertain progression polygons 

ros_p Parcial rate-of-spread (m/h) calculated between consecutive 

ignition\active flaming areas and progression polygon, or 

between two consecutive progression polygons  

>0 for progression polygons with zp_link value >0; -1 for 

previously burned areas or uncertain progression polygons 

spdir_i Spread direction associated with “ros_i” ( ° from North) 0 to 359.99; -1 for the same cases in “ros_i” 

spdir_p Spread direction associated with “ros_p” ( ° from North) 0 to 359.99;  -1 for the same cases in “ros_p” 

duration_i Duration (hours) associated with the “ros_i” metric >0 known progression polygons; -1 for ignition\active flaming 

zones, previously burned áreas or uncertain progression polygons 
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duration_p Duration (hours) associated with the “ros_p” metric >0 known progression polygons; -1 for ignition\active flaming 

zones, previously burned áreas or uncertain progression polygons 

qc Confidence flag for each wildfire See table A1 

FRE Fire Radiative Energy (TJ) >0 for known progressions with at least 70% of FRE observations 

between “sdate” and “edate”; - 1 for the remaining polygons 

FRE_flux Fire Radiative Energy flux (TJ ha-1 h-1) >0 for known progressions with at least 70% of FRE observations 

between “sdate” and “edate”; - 1 for the remaining polygons 

FRE_perc Percentage of FRE observations between “sdate” and “edate” Between 0 and 100 for known progression polygons; -1 for the 

remaining.  

* values will change when the database will be updated with new wildfires.  988 
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Table A5. Attribute fields of the simplified fire behaviour database  (L3) 989 

Field Description Possible values 

fid Fire ID 1-80* 

fname Fire Name Municipality_StartDate (e.g. Gouveia_10082015) 

burn_period Burning period ⩾1 

year Year 2015-2021* 

sdate Start date and hour of the burning period yyyy-mm-dd hh:mm; “na” for burning periods which only have progression 

polygons with unknown “zp_link” (see Table A4) 

edate End date and hour of the burning period yyyy-mm-dd hh:mm; “na” for burning periods which only have progression 

polygons with unknown “zp_link” (see Table A4) 

inidoy Start day-of-year of the burning period 

(hours in decimal values) 

1 to 366; -1 for burning periods which only have progression polygons with 

unknown “zp_link” (see Table A4) 

enddoy End day-of-year of the burning period 

(hours in decimal values) 

1 to 366; -1 for burning periods which only have progression polygons with 

unknown “zp_link” (see Table A4) 

qc Confidence flag for each wildfire See table A1 

area Burned area extent (ha) >0 

growth_rate Average fire growth rate (ha/h) >0; -1 for burning periods which only have progression polygons with 

unknown “zp_link” (see Table A4) 

ros Average rate-of-spread (m/h)  >0; -1 for burning periods which only have progression polygons with 

unknown “zp_link” (see Table A4) 

max_ros Maximum rate-of-spread (m/h) observed in 

the burning period 

>0; -1 for burning periods which only have progression polygons with 

unknown “zp_link” (see Table A4) 

spdir Spread direction associated with “ros_i” ( ° 

from North) 

0 to 359.99; -1 for burning periods which only have progression polygons 

with unknown “zp_link” (see Table A4) 

duration Duration (hours) of the burning period >0; -1 for burning periods which only have progression polygons with 

unknown “zp_link” (see Table A4) 

FRE Fire Radiative Energy (TJ) >0 for known progressions with at least 70% of the area burned during the 

burning period covered with FRE estimates; - 1 for the remaining polygons 

FRE_flux Fire Radiative Energy flux (TJ ha-1 h-1) >0 for known progressions with at least 70% of the area burned during the 

burning period covered with FRE estimates; - 1 for the remaining polygons 

FRE_perc Percentage of FRE observations between 

“sdate” and “edate” 

Between 0 and 100 

* values will change when the database will be updated with new wildfires. 990 
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